Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Balanced Training Sets Improve Deep Learning-Based Prediction of CRISPR sgRNA Activity

Abstract

CRISPR-Cas systems have transformed the field of synthetic biology by providing a versatile method for genome editing. The efficiency of CRISPR systems is largely dependent on the sequence of the constituent sgRNA, necessitating the development of computational methods for designing active sgRNAs. While deep learning-based models have shown promise in predicting sgRNA activity, the accuracy of prediction is primarily governed by the data set used in model training. Here, we trained a convolutional neural network (CNN) model and a large language model (LLM) on balanced and imbalanced data sets generated from CRISPR-Cas12a screening data for the yeast Yarrowia lipolytica and evaluated their ability to predict high- and low-activity sgRNAs. We further tested whether prediction performance can be improved by training on imbalanced data sets augmented with synthetic sgRNAs. Lastly, we demonstrated that adding synthetic sgRNAs to inherently imbalanced CRISPR-Cas9 data sets from Y. lipolytica and Komagataella phaffii leads to improved performance in predicting sgRNA activity, thus underscoring the importance of employing balanced training sets for accurate sgRNA activity prediction.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View