Skip to main content
eScholarship
Open Access Publications from the University of California

The Grism Lens-amplified Survey from Space (Glass). IX. the Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses

  • Author(s): Morishita, T
  • Abramson, LE
  • Treu, T
  • Vulcani, B
  • Schmidt, KB
  • Dressler, A
  • Poggianti, BM
  • Malkan, MA
  • Wang, X
  • Huang, KH
  • Trenti, M
  • Bradač, M
  • Hoag, A
  • et al.
Abstract

© 2017. The American Astronomical Society. All rights reserved. Using deep Hubble Frontier Fields imaging and slitless spectroscopy from the Grism Survey from Space, we study 2200 cluster and 1748 field galaxies at 0.2 ≤ z ≤ 0.7 to determine the impact of environment on galaxy size and structure at stellar masses logM∗M⊙ > 7.8, an unprecedented limit at these redshifts. Based on simple assumptions - re= f (M∗)-we find no significant differences in half-light radii (re) between equal-mass cluster or field systems. More complex analyses- re= f (M∗, U - V, n, z, ∑)-reveal local density (∑) to induce only a 7% ± 3% (95% confidence) reduction in rebeyond what can be accounted for by U ? V color, Sersic index (n), and redshift (z) effects. Almost any size difference between galaxies in high- and low-density regions is thus attributable to their different distributions in properties other than environment. Indeed, we find a clear color-recorrelation in low-mass passive cluster galaxies (logM∗M⊙ < 9.8) such that bluer systems have larger radii, with the bluest having sizes consistent with equal-mass star-forming galaxies. We take this as evidence that large- relow-mass passive cluster galaxies are recently acquired systems that have been environmentally quenched without significant structural transformation (e.g., by ram pressure stripping or starvation). Conversely, ∼ 20% of small-relow-mass passive cluster galaxies appear to have been in place since z ≳ 3. Given the consistency of the small- regalaxies' stellar surface densities (and even colors) with those of systems more than ten times as massive, our findings suggest that clusters mark places where galaxy evolution is accelerated for an ancient base population spanning most masses, with late-time additions quenched by environment-specific mechanisms mainly restricted to the lowest masses.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View