Demersal fish biomass declines with temperature across productive shelf seas
Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Demersal fish biomass declines with temperature across productive shelf seas

Abstract

Abstract: Aim: Theory predicts fish community biomass to decline with increasing temperature due to higher metabolic losses resulting in less efficient energy transfer in warm‐water food webs. However, whether these metabolic predictions explain observed macroecological patterns in fish community biomass is virtually unknown. Here, we test these predictions by examining the variation in demersal fish biomass across productive shelf regions. Location: Twenty one continental shelf regions in the North Atlantic and Northeast Pacific. Time Period: 1980–2015. Major Taxa Studied: Marine teleost fish and elasmobranchs. Methods: We compiled high‐resolution bottom trawl survey data of fish biomass containing 166,000 unique tows and corrected biomass for differences in sampling area and trawl gear catchability. We examined whether relationships between net primary production and demersal fish community biomass are mediated by temperature, food‐web structure and the level of fishing exploitation, as well as the choice of spatial scale of the analysis. Subsequently, we examined if temperature explains regional changes in fish biomass over time under recent warming. Results: We find that biomass per km2 varies 40‐fold across regions and is highest in cold waters and areas with low fishing exploitation. We find no evidence that temperature change has impacted biomass within marine regions over the time period considered. The biomass variation is best explained by an elementary trophodynamic model that accounts for temperature‐dependent trophic efficiency. Main Conclusions: Our study supports the hypothesis that temperature is a main driver of large‐scale cross‐regional variation in fish community biomass. The cross‐regional pattern suggests that long‐term impacts of warming will be negative on biomass. These results provide an empirical basis for predicting future changes in fish community biomass and its associated services for human wellbeing that is food provisioning, under global climate change.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View