Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Inward-to-outward assembly of amine-functionalized carbon dots and polydopamine to Shewanella oneidensis MR-1 for high-efficiency, microbial-photoreduction of Cr(VI)

Abstract

A novel photosensitized living biohybrid was fabricated by inward-to-outward assembly of amine-functionalized carbon dots (NCDs) and polydopamine (PDA) to Shewanella oneidensis MR-1 and applied for high-efficiency, microbial-photoreduction of Cr(VI). Within a 72 h test period, biohybrids achieved a pronounced catalytic reduction capacity (100%) for 100 mg/L Cr(VI) under visible illumination, greatly surpassing the poor capacity (only 2.5%) displayed by the wild strain under dark conditions. Modular configurations of NCDs and PDA afforded biohybrids with a large electron flux by harvesting extracellular photoelectrons generated from illuminated NCDs and increasing reducing equivalents released from an enlarged intracellular NADH/NAD+ pool. Further, increased production of intracellular c-type cytochromes and extracellular flavins resulting from the modular configuration enhanced the biohybrid electron transport ability. The enhancement of electron transport was also attributed to more conductive conduits at NCDs-PDA junction interfaces. Moreover, because NCDs are highly reductive, the enhanced Cr(VI) reduction was also attributed to direct reduction by the NCDs and the direct Cr(VI) reduction by sterile NCDs-assembled biohybrid was up to 20% in the dark. Overall, a highly efficient strategy for removal/transformation of Cr(VI) by using NCD-assembled photosensitized biohybrids was proposed in this work, which greatly exceeded the performance of Cr(VI)-remediation strategies based on conventional microbial technologies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View