Skip to main content
eScholarship
Open Access Publications from the University of California

Suppression of Somatic Expansion Delays the Onset of Pathophysiology in a Mouse Model of Huntington’s Disease

  • Author(s): Budworth, H
  • Harris, FR
  • Williams, P
  • Lee, DY
  • Holt, A
  • Pahnke, J
  • Szczesny, B
  • Acevedo-Torres, K
  • Ayala-Peña, S
  • McMurray, CT
  • et al.
Abstract

© 2015 Budworth et al. Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motor decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.

Main Content
Current View