Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Electron/Hole Mobilities of Periodic DNA and Nucleobase Structures from Large-Scale DFT Calculations

Abstract

Electron/hole transfer mechanisms in DNA and polynucleotide structures continue to garner considerable interest as emerging charge-transport systems and molecular electronics. To shed mechanistic insight into these electronic properties, we carried out large-scale density functional theory (DFT) calculations (up to 650 atoms) to systematically analyze the structural and electron/hole transport properties of fully periodic single- and double-stranded DNA. We examined the performance of various exchange-correlation functionals (LDA, BLYP, B3LYP, and B3LYP-D) and found that single-stranded thymine (T) and cytosine (C) are predominantly hole conductors, whereas single-stranded adenine (A) and guanine (G) are better electron conductors. For double-stranded DNA structures, the periodic A-T and G-C electronic band structures undergo a significant renormalization, which causes hole transport to only occur on the A and G nucleobases. Our calculations (1) provide new benchmarks for periodic nucleobase structures using dispersion-corrected hybrid functionals with large basis sets and (2) highlight the importance of dispersion effects for obtaining accurate geometries and electron/hole mobilities in these extended systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View