- Main
Glycocalyx transduces membrane leak in brain tumor cells exposed to sharp magnetic pulsing.
Published Web Location
https://doi.org/10.1016/j.bpj.2023.10.020Abstract
Mechanisms by which electric (E) or magnetic (B) fields might be harnessed to affect tumor cell behavior remain poorly defined, presenting a barrier to translation. We hypothesized in early studies that the glycocalyx of lung cancer cells might play a role in mediating plasma membrane leak by low-frequency pulsed magnetic fields (Lf-PMF) generated on a low-energy solenoid platform. In testing glioblastoma and neuroblastoma cells known to overexpress glycoproteins rich in modifications by the anionic glycan sialic acid (Sia), exposure of brain tumor cells on the same platform to a pulse train that included a 5 min 50Hz Lf-PMF (dB/dt ∼ 2 T/s at 10 ms pulse widths) induced a very modest but significant protease leak above that of control nonexposed cells (with modest but significant reductions in long-term tumor cell viability after the 5 min exposure). Using a markedly higher dB/dt system (80 T/s pulses, 70 μs pulse-width at 5.9 cm from a MagVenture coil source) induced markedly greater leak by the same cells, and eliminating Sia by treating cells with AUS sialidase immediately preexposure abrogated the effect entirely in SH-SY5Y neuroblastoma cells, and partially in T98G glioblastoma cells. The system demonstrated significant leak (including inward leak of propidium iodide), with reduced leak at lower dB/dt in a variety of tumor cells. The ability to abrogate Lf-PMF protease leak by pretreatment with sialidase in SH-SY5Y brain tumor cells or with heparin lyase in A549 lung tumor cells indicated the importance of heavy Sia or heparan sulfate glycosaminoglycan glycocalyx modifications as dominant glycan species mediating Lf-PMF membrane leak in respective tumor cells. This first-physical Lf-PMF tumor glycocalyx event, with downstream cell stress, may represent a critical and tunable transduction mechanism that depends on characteristic anionic glycans overexpressed by distinct malignant tumors.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-