Skip to main content
Open Access Publications from the University of California

Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing

  • Author(s): Prikhodko, IP
  • Trusov, AA
  • Shkel, AM
  • et al.

We present a long-term bias drift compensation algorithm for high quality factor (Q-factor) MEMS rate gyroscopes using real-time temperature self-sensing. This approach takes advantage of linear temperature dependence of the drive-mode resonant frequency for self-compensation of temperature-induced output drifts. The approach was validated using a vacuum packaged silicon Quadruple Mass Gyroscope (QMG), with signal-to-noise ratio (SNR) enhanced by isotopic Q-factors of 1.2 million. Owing to the high Q-factors, measured frequency resolution of 0.01 ppm provided a temperature self-sensing precision of 0.0004°C, on par with the state-of-the-art MEMS resonant thermometers. The real-time self-compensation yielded a total bias error of 2°/h and a scale-factor error of 700 ppm over temperature range of 25-55°C. The presented approach enabled repeatable long-term rate measurements required for MEMS gyrocompassing applications with a milliradian azimuth precision. © 2012 Elsevier B.V. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View