Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Reducing Macrophage Proteoglycan Sulfation Increases Atherosclerosis and Obesity through Enhanced Type I Interferon Signaling

Abstract

Heparan sulfate proteoglycans (HSPGs) are an important constituent of the macrophage glycocalyx and extracellular microenvironment. To examine their role in atherogenesis, we inactivated the biosynthetic gene N-acetylglucosamine N-deacetylase-N-sulfotransferase 1 (Ndst1) in macrophages and crossbred the strain to Ldlr(-/-) mice. When placed on an atherogenic diet, Ldlr(-/-)Ndst1(f/f)LysMCre(+) mice had increased atherosclerotic plaque area and volume compared to Ldlr(-/-) mice. Diminished sulfation of heparan sulfate resulted in enhanced chemokine expression; increased macrophages in plaques; increased expression of ACAT2, a key enzyme in cholesterol ester storage; and increased foam cell conversion. Motif analysis of promoters of upregulated genes suggested increased type I interferon signaling, which was confirmed by elevation of STAT1 phosphorylation induced by IFN-β. The proinflammatory macrophages derived from Ndst1(f/f)LysMCre(+) mice also sensitized the animals to diet-induced obesity. We propose that macrophage HSPGs control basal activation of macrophages by maintaining type I interferon reception in a quiescent state through sequestration of IFN-β.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View