Skip to main content
eScholarship
Open Access Publications from the University of California

Frontiers of Biogeography

Frontiers of Biogeography bannerUC Merced

Different levels of disturbance influence the distributional patterns of native but not exotic plant species on New Zealand small islands

Abstract

Disturbances of oceanic origin can severely affect plant communities on islands, but it is unclear whether they promote or deter biological invasions. Here, I collected floristic data from 97 small islands subject to different levels of ocean-borne disturbances (i.e. inside and outside Wellington Harbour, New Zealand). First, I tested how relationships between the richness of native and exotic species and island characteristics (e.g. area, isolation, height, distance from nearest dwelling) changed depending on island location. Next, I assessed compositional differences on inner and outer islands for both native and exotic species, and how they vary with geographic distance between islands (i.e. distance-decay). Results show that the richness of both native and exotic plant species was similarly related to island characteristics regardless of island location. Both native and exotic species richness consistently increased with area and nearest dwelling. However, only exotics richness always declined with isolation, while natives richness alone consistently increased with height (elevation). Natives on outer, more exposed islands were floristically more homogenous, and compositional differences changed less strongly with the distance between islands than inside Wellington harbour. In contrast, exotics exhibited similar distributional patterns regardless of island location. Different levels of ocean-borne disturbances might explain distinct distributional patterns in native species. Conversely, results for exotic species might reflect a lack of coastal specialists in the species pool. Perhaps time-lags in the invasion process and non-equilibrium dynamics play a role as well. Conservation bodies should similarly manage islands sustaining different levels of ocean-borne disturbances.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View