The branch‐cut quantum gravity with a self‐coupling inflation scalar field: Dynamical equations
Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

The branch‐cut quantum gravity with a self‐coupling inflation scalar field: Dynamical equations

Abstract

Abstract: This article focuses on the implications of the recently developed commutative formulation based on branch‐cutting cosmology, the Wheeler–DeWitt equation, and Hořava–Lifshitz quantum gravity. Assuming a mini‐superspace of variables, we explore the impact of an inflaton‐type scalar field on the dynamical equations that describe the trajectories evolution of the scale factor of the Universe, characterized by the dimensionless helix‐like function . This scale factor characterizes a Riemannian foliated spacetime that topologically overcomes the big bang and big crunch singularities. Taking the Hořava–Lifshitz action as our starting point, which depends on the scalar curvature of the branched Universe and its derivatives, with running coupling constants denoted as , the commutative quantum gravity approach preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. We investigate both chaotic and nonchaotic inflationary scenarios, demonstrating the sensitivity of the branch‐cut Universe's dynamics to initial conditions and parameterizations of primordial matter content. The results suggest a continuous connection of Riemann surfaces, overcoming primordial singularities and exhibiting diverse evolutionary behaviors, from big crunch to moderate acceleration.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View