- Main
Tyrosine-Based Signals Regulate the Assembly of Daple⋅PARD3 Complex at Cell-Cell Junctions
Published Web Location
https://doi.org/10.1016/j.isci.2020.100859Abstract
Polarized distribution of organelles and molecules inside a cell is vital for a range of cellular processes and its loss is frequently encountered in disease. Polarization during planar cell migration is a special condition in which cellular orientation is triggered by cell-cell contact. We demonstrate that the protein Daple (CCDC88C) is a component of cell junctions in epithelial cells which serves like a cellular "compass" for establishing and maintaining contact-triggered planar polarity. Furthermore, these processes may be mediated through interaction with the polarity regulator PARD3. This interaction, mediated by Daple's PDZ-binding motif (PBM) and the third PDZ domain of PARD3, is fine-tuned by tyrosine phosphorylation on Daple's PBM by receptor and non-receptor tyrosine kinases, such as Src. Hypophosphorylation strengthens the interaction, whereas hyperphosphorylation disrupts it, thereby revealing an unexpected role of Daple as a platform for signal integration and gradient sensing for tyrosine-based signals within the planar cell polarity pathway.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-