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This dissertation aims at improving the current understanding of the physics of mo-

bile impurities in highly correlated liquid-like phases of matter. Impurity problems

pose challenging and intricate questions in different realms of many-body physics. For

instance, the problem of “solvation” of charged solutes in polar solvents, has been

the subject of longstanding debates among chemical physicists. The significant role of

quantum fluctuations of the solvent, as well as the break down of linear response theory,

render the ordinary treatments intractable. Inspired by this complicated problem, we

first attempt to understand the role of non-specific quantum fluctuations in the solvation

process. To this end, we calculate the dynamic structure factor of a model polar liquid,

using the classical Molecular Dynamics (MD) simulations. We verify the failure of

linear response approximation in the vicinity of a hydrated electron, by comparing the

outcomes of MD simulations with the predictions of linear response theory. This non-

linear behavior is associated with the pronounced peaks of the structure factor, which

reflect the strong fluctuations of the local modes. A cavity picture is constructed based

on heuristic arguments, which suggests that the electron, along with the surrounding

polarization cloud, behave like a frozen sphere, for which the linear response theory is

broken inside and valid outside. The inverse radius of the spherical region serves as a
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UV momentum cutoff for the linear response approximation to be applicable.

The problem of mobile impurities in polar liquids can be also addressed in the

framework of the “polaron” problem. Polaron is a quasiparticle that typically acquires

an extended state at weak couplings, and crossovers to a self-trapped state at strong

couplings. Using the analytical fits to the numerically obtained charge-charge struc-

ture factor, a phenomenological approach is proposed within the Leggett’s influence

functional formalism, which derives the effective Euclidean action from the classical

equation of motion. We calculate the effective mass of the polaron in the model polar

liquid at zero and finite temperatures. The self-trapping transition of this polaron turns

out to be discontinuous in certain regions of the phase diagram.

In order to systematically investigate the role of quantum fluctuations on the polaron

properties, we adopt a quantum field theory which supports nearly-critical local modes:

the quantum Landau-Brazovskii (QLB) model, which exhibits fluctuation-induced first

order transition (weak crystallization). In the vicinity of the phase transition, the quan-

tum fluctuations are strongly correlated; one can in principle tune the strength of these

fluctuations, by adjusting the parameters close to or away from the transition point.

Furthermore, sufficiently close to the transition, the theory accommodates “soliton” so-

lutions, signaling the nonlinear response of the system. Therefore, the model seems to

be a promising candidate for studying the effects of strong quantum fluctuations and

also failure of linear response theory, in the polaron problem. We observe that at zero

temperature, and away from the Brazovskii transition where the linear response ap-

proximation is valid, the localization transition of the polaron is discontinuous. Upon

enhancing fluctuations—of either thermal or quantum nature—the gap of the effective

mass closes at distinct second-order critical points. Sufficiently close to the Brazovskii

transition where the nonlinear contributions of the field are significantly large, a new

state appears in addition to extended and self-trapped polarons: an impurity-induced

soliton. We interpret this as the break-down of linear response, reminiscent of what

we observe in a polar liquid. Quantum LB model has been proposed to be realizable
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in ultracold Bose gases in cavities. We thus discuss the experimental feasibility, and

propose a setup which is believed to exhibit the aforementioned polaronic and solitonic

states.

We eventually generalize the polaron formalism to the case of impurities that cou-

ple quadratically to a nearly-critical field; hence called the “quadratic polaron”. The

Hertz-Millis field theory and its generalization to the case of magnetic transition in he-

limagnets, is taken as a toy model. The phase diagram of the bare model contains both

second-order and fluctuation-induced first-order quantum phase transitions. We pro-

pose a semi-classical scenario in which the impurity and the field couple quadratically.

The polaron properties in the vicinity of these transitions are calculated in different

dimensions. We observe that the quadratic coupling in three dimensions, even in the

absence of the critical modes with finite wavelength, leads to a jump-like localization

of the polaron. In lower dimensions, the transition behavior remains qualitatively simi-

lar to those in the case of linear coupling, namely the critical modes must have a finite

wavelength to localize the particle.
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CHAPTER 1

Introduction

Scientific methods are strictly based upon “observations”, which are performed by

means of suitable apparatuses, and are intended to provide us with useful informa-

tion about an unknown system. The basic idea is to treat any complex system as a black

box; we learn about the system by sending signals and analyzing the outcome, i.e. the

responses of the system to external perturbing stimuli. Depending on the properties of

interest, we may apply various probes. As a general rule, signals with higher energies

are required to probe the system at smaller scales of space and time.

The subject of condensed matter physics mainly concerns the collective behavior

of many-body systems, and as a manifestation of the bulk behavior, studies different

properties of the phases of matter and also the transitions between these phases. In

particular, the theory of critical phenomena investigates the underlying mechanisms of

phase transitions, which are accompanied by changes in the thermodynamic properties

of the system. Interesting phenomena emerge as the energy scales of two competing

contributions become comparable. Phase transitions take place as a consequence of

the competition between different energetic and/or entropic contributions to the free

energy of a system. Classical systems can undergo phase transitions which are driven

entropically due to thermal fluctuations. The role of thermal fluctuations becomes less

significant as the temperature falls below kBT ∼ ~ω, where ω is the characteristic fre-

quency scale of the low-lying excitations of the system. Quantum phase transitions—at

absolute zero temperature—are thus driven by quantum fluctuations.
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1.1 Impurities in Condensed Matter Systems

1.1.1 General Background

Impurities and defects are omnipresent in actual condensed matter systems. Defects

come in various dimensions, from point-like (zero dimensional) to line dislocations

and ruptures. They are mathematically represented by local potentials which depend

on the nature of the defect. Point-like defects can be viewed as massive, immobile

impurity particles in which the quantum zero-point motion is negligible. The renormal-

ized coupling obtained upon integrating out the zero point motion, differs from the bare

interaction.

In ultra-low temperature condensed matter systems, where the system is subject to

strong quantum fluctuations, the problem of impurities becomes even more cumber-

some. The role of interactions can be highly nontrivial, leading for example, to vio-

lations of Landau theory of Fermi liquids in some metallic systems near the magnetic

phase transitions [1]. The Landau-Fermi-liquid theory is expected to be valid below a

certain non-universal temperature T ∗. The value of T ∗ depends on many parameters

such as electron-phonon coupling strength. Non-Fermi-liquid (NFL) behavior, which

is characterized by deviations from the Fermi-liquid scaling laws, appears above T ∗. In

order to observe NFL behavior down to zero temperature in the vicinity of a magnetic

quantum phase transition, the mentioned energy scale T ∗ must disappear one way or

the other. Immobile magnetic impurity (Kondo impurity) is a renowned example which

amounts to the zero temperature residue of resistivity in metals [2], and also local NFL

behavior [1]. The Kondo problem studies a magnetic impurity interacting with the itin-

erant electrons. Static nonmagnetic defects are also known to dominate the response of

a system near a magnetic phase transition, which in certain cases results in the so-called

Griffiths behavior [3]. The latter is another source of NFL, which is indeed caused by

broadening the distribution of local T ∗ in the system, such that there remains no well-

defined energy scale [1]. At zero temperature near a quantum phase transition, where
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the imaginary-time enters as a new dimension, the role of the dynamics is very crucial

in determining the dominating behaviors. In particular we note that at zero temperature,

the static defects are perfectly correlated over this new dimension, and thus can have

dramatic influence on the nature the phase transitions.

Light impurities, like single electrons, are subject to quantum zero-point fluctua-

tions of the position-momentum conjugate pair. We refer to these impurities as mo-

bile impurities. Mobile impurities behave quite differently when interacting with the

surrounding medium. As a result of this interaction, the impurity can “polarize” the

medium around itself; the induced polarization digs a potential well for the particle,

and the particle tends to get localized. This iterative process goes on until the zero-

point motion of the particle balances out the attractive self-trapping energy gain. The

arising excitation is a quasiparticle consisting of the impurity and the induced polariza-

tion. Inspired by the original problem of electrons in polar crystals, this quasiparticle

was coined “polaron” by Landau. The problem initially considered an excess electron

interacting with longitudinal optical phonons of a crystal. However, the notion of po-

laron was later generalized to other structurally similar systems of impurities interacting

with bosonic fields. Mobile impurities can be viewed as polarons, and when the effec-

tive mass of the impurity is sent to infinity, we essentially recover the physics of a static

impurity (defect). Also the attractive nature of the polaron’s self-interaction, which is

counteracted by the zero-point pressure, eventually and at sufficiently strong couplings

makes the particle self-trapped, a state which is characterized by a significantly large

effective mass. As mentioned above, the strong coupling limit of the polaron problem

can thus serve as a model for a static local defect with a renormalized coupling.

The problem of “polarons and mobile impurities near a quantum phase transition”

was originally inspired by the interesting role of quantum fluctuations in the solvation

process of a charged particle in polar liquids. Apart from the solvent-specific effects,

the challenges that one deals with in the solvation problem are reminiscent of those

in the polaron problem. The theoretical studies of impurities embedded in many-body
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systems rely vastly on the linear response approximation. The impurity is considered

as an external weak perturbation to the system, for which the leading order response

is captured by the linear term. However, the strong quantum fluctuations in the solva-

tion process or near a quantum phase transition, do not seem to be tractable via linear

response formalism. In fact while the impact of a single impurity on the system is mi-

nuscule on average, and in the thermodynamic limit, this is not true in the vicinity of

the impurity, and the linear response theory might become locally invalid.

Below we briefly mention a few conceptually important steps of derivation and also

some of the consequences and corollaries of the linear response theory, such as Kubo

formula and Fluctuation-dissipation theorem. Next, we discuss some of the difficulties

that one faces in the study of solvation dynamics, and then introduce the formal notion

of polaron.

1.1.2 Linear Response Theory

In the linear response formalism one first assumes that total Hamiltonian of the system

is given by

ĤT = Ĥ0 + Ĥext, (1.1)

in which Ĥ0 and Ĥext represent the Hamiltonians of the isolated system and the external

stimuli, respectively. The interaction picture of the above system can be constructed by

splitting the dynamics of the system into that of the physical observables following Ĥ0,

and that of the states which is governed by Ĥext. Denoting the exact ground state of the

system by |G〉, we calculate the expectation value of an observable Ô(x, t) under the

influence of Ĥext:

〈G|Û−1(t)Ô(x, t)Û(t)|G〉. (1.2)

In the above expression Û(t) is the evolution operator in the interaction picture, and is

given by,

Û(t) = T exp

(
− i
~

∫ t

−∞
dt′ Ĥext(t

′)

)
, (1.3)
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where T denotes the time ordering operator. Assumption of the weak perturbation al-

lows us to expand the exponential in terms of external coupling. The change in the

expectation value is given by

δ〈G|Ô(x, t)|G〉 =
i

~

∫ t

−∞
dt′ 〈G|[Ĥext(t

′), Ô(x, t)]|G〉, (1.4)

in which it is implicitly assumed that t > t′, due to causality. For local observables like

Ô(x, t), there exists a conjugate external source F (x, t) which couples linearly to the

observable:

Ĥext(t) =

∫
ddx Ô(x, t)F (x, t). (1.5)

If the operators are normal ordered with respect to the vacuum, which implies that

〈G|Ô(x, t)|G〉 = 0, we obtain for the fluctuations of the observable Ô(x, t);

〈G|Ô(x, t)|G〉 =

∫
ddx′

∫ t

−∞
dt′ χ(x, t; x′, t′)F (x′, t′), (1.6)

where χ(x, t; x′, t′) defines the generalized susceptibility or the correlation function of

the observable Ô(x, t). Alternatively, in the frequency domain we get

〈G|Ô(x, ω)|G〉 =
−i
~

∫
ddx

∫ 0

−∞
dt′ 〈G|[Ô(x, t), Ô(x′, t+ t′)]|G〉F (x′, ω). (1.7)

The susceptibility is then obtained by:

χ(x,x′;ω) =
−i
~

∫ 0

−∞
dτ eiωτ 〈G|[Ô(x, 0), Ô(x′, τ)]|G〉. (1.8)

This is called the Kubo formula [4, 5].

• Fluctuation-Dissipation Theorem

The response functions of a system can be calculated by using “fluctuation-dissipation

theorem” which relates the non-equilibrium response function to the ensemble aver-

ages of equilibrium fluctuations, the structure factor. Structure factor is defined as an

expectation value:

Σ(q, ω) ≡
∫

ddx
∫

dt eiωt−iq.x〈Ô(0, 0)Ô(x, t)〉. (1.9)
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Using the time ordering definition we find that Σ(q,−ω) = e−β~ωΣ(q, ω). According

to fluctuation-dissipation theorem, the structure factor is related to the imaginary part

of the susceptibility through

Im {χ(q, ω)} =
~
2

(
1− e−β~ω

)
Σ(q, ω). (1.10)

This statement can be interpreted in terms of the intuitive argument, that the local ob-

servable is incapable of distinguishing the external perturbations from the inherent fluc-

tuations, and hence responds similarly [4, 5].

1.1.3 Break down of Linear Response Theory in Solvation Problem

A challenging problem in chemical physics which has attracted so many physicists is

the “solvation” (or hydration) of charged particles in polar solvents. The study of the

solvation of particles in fluids is a fascinating area of chemical physics with an enor-

mous literature [6, 7] that dates back to two centuries [8]. Solvated atoms and ions are

surrounded by partially ordered shells of solvent molecules (“solvation shells”). On the

other hand, solvent molecules surrounding solvated electrons appear to remain disor-

dered [9]. Despite much recent progress, fundamental challenges remain, such as the

breakdown of linear-response theory [10], solvent-specific effects that complicate con-

tinuum descriptions [11, 12] and the role of quantum fluctuations [13]. As an example,

water—a very important solvent—is a highly correlated liquid characterized by com-

plex, fluctuating patterns of hydrogen-bonding [14] which can be viewed as precursors

of the freezing transition. The solvation of a particle in water depends on its compati-

bility with these fluctuations [15]. Path integral simulations of proton solvation in water

indicate that the pattern of hydrogen bonding surrounding a solvated proton is subject

to strong quantum fluctuations [16] while simulations of electrons in water [17] lead to

wave-functions that are suggestive of Anderson localization [18]. In the remainder of

this section, we elaborate on some of the mentioned issues.

In the process of solvation, the energy of the excited solute E exc decays to its ground
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state Egnd, as a result of energy exchanging with the solvent. The solvation energy gap

∆E = E exc−Egnd in the relaxation dynamics of the hydrated electron can be monitored

through non-equilibrium solvent response function [19, 20]:

S(t) =
∆E(t)−∆E(∞)

∆E(0)−∆E(∞)
. (1.11)

The overbar represents the non-equilibrium ensemble average under the initial condi-

tion that the electron is at the excited state at t = 0.

In the study of solvation dynamics, the applicability of linear response approxima-

tion is usually taken for granted. This is based on the Onsager regression hypothesis

[21, 22], based on which the linear response of the system to an external perturbation

is related to the equilibrium statistical fluctuations. The latter is characterized by:

C(t) =
〈δ∆E(0) δ∆E(t)〉
〈(δ∆E)2〉 . (1.12)

Here 〈•〉 means equilibrium ensemble averaging, and δ∆E = ∆E − 〈∆E〉 is the equi-

librium fluctuations of the energy gap.

The validity of linear response theory in the process of solvation can be sometimes

examined by comparing the non-equilibrium solvent response function S(t), and the

equilibrium solvation time correlation function C(t). The two become identical when

the linear response approximation is valid. The reverse statement, however, does not

necessarily hold true; one cannot conclude the validity of linear response based on

the similarity of the two functions [20]. In order to unravel the source of the failure of

linear response one needs to be able to distinguish the effect of a specific type of molec-

ular motions of the solvent (e.g. translational, vibrational, librational), on the solvation

dynamics. A method was devised which employs the projection of the classical bath

degrees of freedom onto the dynamics of classical solute [23]; this was hence utilized

to explain the hidden break down of linear response for the problem of classical sol-

vation [20]. Finally, the formalism was extended to the case of projection of classical

molecular motions onto the solvation dynamics of a quantum solutes [19], and specif-

ically the case of the photoexcited hydrated electron, e−hyd. Because of the similarities
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between S(t) and C(t), it was believed for a long time, that the linear response theory

holds for this system [24]. On the contrary, it was shown in the study of classical solva-

tion, that linear response theory typically fails to capture the non-equilibrium solvation

dynamics, when it involves size and/or shape changes of the solute particle [25]. Since

the solvation of excited electron is accompanied by a shape change from s-like to p-

like, the dynamics of non-equilibrium and equilibrium solvation processes are expected

to exhibit different properties. This observation intrigued further investigations; mixed

quantum-classical simulations (quantum solute in classical solvent) using the SPC-Flex

model for water molecules which are interacting with an electron through a pseudopo-

tential [26], and with a larger statistical sampling of the phase-space—than that used in

[24]—reported the break down of linear response, and applied the projection method

to investigate the sources of discrepancy between S(t) and C(t) [19]. It is noteworthy

that in all the above studies, it was believed that the electron occupies a quasi-spherical

region surrounded by the water molecules, the so-called cavity picture.

The commonly accepted cavity picture of the hydrated electron was challenged by

a recent study which offered a different picture for the hydrated electron. According to

this new picture which employed a rigorously derived pseudopotential that accounts for

attractive oxygen and repulsive hydrogen features, the hydrated electron—in contrast

to cavity picture—is spread over a region of size ∼ 1 (nm), where the density of water

is increased [17] (see Fig. (1.1)).
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(a)

(b)

Figure 1.1: (From Ref. [17]) The top panel (a) shows the wave-function of the electron

in liquid water. The outer meshed shell encloses %90 of electrons distributions whereas

the inner opaque shell encloses %50 of that. The density of water is increased in these

regions. (b) shows the zoomed-in inner shell.
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1.1.4 Polaron Problem

According to the standard polaron problem, a quantum mechanical impurity (sometime

interchangeably called “mobile impurity” in the literature and in context as well as

throughout this dissertation), when interacting with longitudinal optical phonons, can

acquire either extended or self-trapped polaronic states depending on the coupling con-

stant. This is the standard Feynman’s polaron which by means of an all-coupling vari-

ational approach, interpolates between the weak and strong coupling regimes, which

were separately studied by Fröhlich, and, by Landau and Pekar.

The mode spectrum of the background medium, can drastically influence the po-

laron properties like effective mass and self energy. Parenthetically, we shall mention

that these properties are commonly studied in (ultracold atomic) experiments through

optical absorption and radio frequency (RF) spectroscopy. At finite temperatures where

the quantum fluctuations of the field are largely suppressed, the particle is effectively

interacting with a “frozen” field (or microscopically the constituents of the field). This

mathematically corresponds to the so-called “Born-Oppenheimer” approximation. In

this case if the background medium is in a disordered phase, as in the case of electrons

in polar liquids, the impurity particle is effectively placed in a random potential. This

problem, apart from the mathematical difficulties that may arise from, for instance, the

complex mode spectrum, is conceptually easily approachable, and one might envision

scenarios such as Anderson localization of waves in random potentials. However, for

the regimes where the energy scale of the quantum fluctuations of the field become

comparable to those of the thermal fluctuations and/or the zero point energy of the im-

purity, the interplay between different sources of fluctuations of the many-body as well

as impurity degrees of freedom, makes the problem intractable at early stages.

In the next two sections, we introduce the general scenario of quantum phase tran-

sitions and eventually discuss the role of ultracold atomic physics and some approaches

in studying mobile impurities in correlated systems.
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1.2 Classical vs. Quantum Phase Transitions

Our formal understanding of the classical critical phenomena was initiated and devel-

oped based on the Landau-Ginzburg theory of symmetry-breaking. This phenomeno-

logical framework was later augmented by the idea of renormalization group, in part

by Wilson. The theory of classical phase transitions is fairly well understood: phase

transitions are classified based on the symmetries and the spatial dimensionality of

the system. A key ingredient of Landau-Ginzburg-Wilson theory near a second or-

der phase transition, is the notion of a long-wavelength macroscopic order parameter,

which is zero in the symmetric phase and continuously takes on non-zero values below

the critical point, i.e. in the symmetry-broken phase. The correlation length diverges

upon approaching the critical point, and the scaling exponents are exclusive to univer-

sality classes. The statics and dynamics of the classical phase transitions are separable.

The dynamics of the classical critical phenomena is usually defined according to the

Halperin-Hohenberg classification [27].

In the simplest form of LGW theory (or φ4-theory), the fluctuations occur around

the wave-vector q = 0, which represents a single isolated point in momentum space. As

mentioned, this gives rise to a second order (continuous) phase transition. The Gaussian

fluctuations around the mean-field solution, modify the critical behavior in 2 ≤ d ≤ 4.

Hence dl = 2 and du = 4 are called the lower and upper critical dimensions of the

φ4-theory, respectively. The lower critical dimension can be calculated according to

the Mermin-Wagner theorem, which prohibits the spontaneous symmetry breaking in

d ≤ 2 for any positive temperature T > 0. In fact the effect of the strong fluctuations

destroys the symmetry-breaking. The upper critical dimension is determined by using

the Ginzburg criterion or renormalization group. This means that for d < 4, the critical

behavior (e.g. exponents) of the theory is dominated by fluctuations; above d > 4, the

scaling behavior can be predicted by mean-field theory.

In spite of a rather thorough understanding of the framework of classical critical
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phenomena, quantum phase transitions pose significantly more difficult theoretical and

experimental challenges. Apart from the nontrivial roles of entanglement and other

properties which are absent in classical systems, statics and dynamics are no longer

separable. In fact the equilibrium critical behavior of a system near a quantum phase

transition is strongly influenced by its dynamics. This enters, for example, in the ef-

fective dimensionality of the system: near a quantum phase transition, correlation time,

like the correlation length, diverges according to a power law. The scaling exponent is

then related to the effective dimensions (see below).

1.2.1 Hertz-Millis Theory of Quantum Phase Transitions

A field theoretical approach to study quantum second-order phase transitions, was de-

veloped by Hertz and later modified by Millis [28, 29]. The theory resembles LGW

theory, except dynamics is—near the quantum phase transition—essentially mixed with

statics, unlike the classical cases where the statics and dynamics are uncorrelated and

their fluctuations can be integrated out separately. Hertz-Millis formalism was in-

tended to describe the itinerant-electron magnetization transitions (e.g. Stoner ferro-

magnetism). At zero temperature, (kBβ)−1 → 0, the “imaginary-time” is an infinitely

extended dimension; the effective dimensionality of the theory, D, is then increase by

the dynamical exponent z (i.e. D = d+ z), where z is obtained by the scaling relation

between correlation time and length: ξt ∼ ξz. At finite temperatures, the geometry of

the domain of the order-parameter corresponds to a slab with a finite “length” β~ in

one dimension and infinitely long in other dimensions.

Depending on the type of dynamics, the dynamic exponent z can take different

values. For example the in undamped dynamics case, where space and time enter on

the same footing, we expect the dynamics to add “one” to the effective dimensions,

hence z = 1. In overdamped, z = 2. In general 2/z turns out to be a measure of

the importance of the quantum fluctuations to classical ones. The larger the z, the less

important the quantum effects.
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We now introduce a class of phase transitions which is not encapsulated in the

traditional LGW theory.

1.2.2 Fluctuation-induced First Order Phase Transitions

Fluctuation induced first order phase transitions occur when the order parameter is cou-

pled to a “gauge” field, whose fluctuations diverge at a finite wave-vector q0. Examples

include vector potential for superconductors or director field in smectic-A liquid crys-

tals. As another example, in a ubiquitous class of phase transitions, the so-called crys-

tallization, the order parameter seems to adopt a favored wave-vector of size |q| = q0.

(Weak) crystallization is a transition between the disordered phase with continuous

translational symmetry (liquid), and an ordered phase (crystal), modulated by one of

the many degenerate modes with preferred wave-vector q0. Therefore the divergent

fluctuations occur—in spatial dimensions d ≥ 2—around a hyper-sphere, forming a

momentum shell in the momentum space.

The theory of weak crystallization was put forward by Brazovskii. In an attempt

to describe the “crystallization” transition, and in accord with Landau’s earlier trials,

Brazovskii proposed a field theory. This field theory—if treated like a LGW theory,

hence Landau-Brazovskii (LB) theory—results in a second order phase transition at

mean-field level. However if the fluctuations are taken into account, the abundance of

these critical modes keeps the renormalized distance from the transition positive (even

below the mean-field critical point). Also, the quartic vertex becomes negative, but

eventually a positive sixth-order term is generated in the RG procedure which stabi-

lizes the free energy. Therefore the free energy density develops a nonzero minimum

in addition to the zero Gaussian minimum. This implies that the order-parameter, at the

transition where the minima are degenerate, jumps discontinuously from disordered

zero to ordered nonzero value. We note that the consequence of adding the fluctuations

is counterintuitive in the Brazovskii mechanism. The fluctuations are intuitively and

generically expected to smear the singularity of the free energy, however in d > 1-
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dimensional Brazovskii model, including the fluctuations results in a weakly first order

phase transition, where the system avoids the critical point altogether, and prefers pay-

ing the latent heat energy in lieu of the fluctuations’ entropic expense (which occur at

wave-vector q0). In superconductivity too, the fluctuating gauge field (vector potential),

yields a similar effect. These phase transitions are commonly called the fluctuation-

induced first order phase transitions.

In the vicinity of a first order transitions, the coexistence of the phases is permit-

ted where the nucleated islands of the ordered phase are separated from the disordered

bulk by a domain-wall with a thickness of the order of the correlation length, which

is no longer divergent. Thus first order transitions are generically not described by a

LGW-type continuum field theory. Nonetheless, in the case of weakly first order transi-

tions, where the discontinuity of the order parameter is small, and where the correlation

length, although finite, is very large, the coarse-graining and field theory formalism

becomes valid again and the field theory description of the weak crystallization is le-

gitimate. It is noteworthy that Landau-Brazovskii (LB) mechanism has been shown, in

certain systems, to persist down to zero temperature making it a quantum phase transi-

tion (QLB).

1.2.3 Phase Transitions in Ultracold Quantum Gases

It was only recently around the turn of the twenty first century, that physicists succeeded

in realizing quantum states of matter, and furthermore became capable of manipulat-

ing the systems and driving the transitions between different states. Ultracold atomic

physics and cavity quantum electrodynamics have employed novel techniques such as

laser cooling and/or evaporative cooling, to isolate the system from energy-exchanging

environments and preserve the quantum characteristics of the system such as quantum

coherence and entanglement, for time scales longer than those required in the experi-

ment. Apart from the experimental interests, the fields provide ideal testbeds for theo-

retical models. Indeed designing the experiments for realizing classical model theories
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through combinations of light-matter interactions of various sorts, is an active area of

research. The engineering of quantum many-body cold atomic systems has been very

successful as it usually provides us with a set of widely tunable knobs to explore the

phase diagram of the system in hand. A commonly used technique, which allows us to

explore the role of interactions (both strength and sign) in quantum gases, is Feshbach

resonance. Through Feshbach resonance, one can tune the scattering length over a rel-

atively large range, sometimes a few orders of magnitude. This can easily be applied

to interactions between the same or different species of ingredients (atoms, molecules,

etc.). Both pure and impure model systems have been employed to explore the role of

quantum fluctuations and their interplay with inter- and intra-species interactions [30].

Furthermore, it is easily possible to change the dimensionality of the system in cold

atomic experiments. Laser-pumping, for instance, can be used to confine the gas so

tightly that the effective dimensionality of the system is reduced to lower than three.

Among the realizable phases, BECs are of special interest because of their long-

range quantum coherence. Pure BECs are commonly described by the self-consistent

nonlinear Gross-Pitaevski equation (GPE), and the fluctuations around the vacuum are

approximated by the gapless Bogoliubov excitations. The self-interaction term in the

GPE of an atomic condensate is represented by a local potential corresponding to the

Lippmann-Schwinger s-wave scattering, in which the strength of the contact pseudopo-

tential is proportional to the scattering length. The nonlinear nature of GPE, also sup-

ports non-dispersive solutions (“Solitons”), appearing concurrently in density and in

the phase of the wave-function.

Optical lattices can be used to trap the bosonic atoms in a BEC, and they have

been used to drive phase transitions. When the lattice depth is sufficiently large, the

superfluid phase becomes unstable towards the Mott insulator phase. Here the explicit

symmetry breaking determines the nodes into which the bosons get trapped. Cavities

on the other hand, allow for a much richer and more complex collective behaviors

through the photon-mediated interactions. These interactions in a single-mode cavity
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result in the appearance of density modulation of a BEC which is trapped in a very wide

parabolic well. Although the potential depth in the case of BEC in single mode cavity

is emergent [31, 32, 33], the nodes are again determined by the cavity mode.

We eventually turn to the case of multimode cavities. The simplest example of a

multimode cavity is a ring cavity with two counter-propagating waves. While the order-

ing transition can be observed in single-mode cavities, through an explicit symmetry-

breaking, the multimode cavities allow for the “emergent” crystallinity. By emergent

here we mean “spontaneous” symmetry-breaking. It has been proposed that sponta-

neous symmetry-breaking of translational symmetry in the form of crystallization tran-

sition can be observed in BECs in multimode cavities which are transversely pumped

by a laser. The transverse laser provides a periodic potential (optical lattice) with par-

allel nodal and antinodal sheets. The atomic cloud is trapped in one of the antinodal

sheets of the laser, and is also interacting with the cavity photons as well as the dissi-

pative extracavity photons. The light-mediated interactions, softens the local modes of

some finite wave-vector q0. When the intensity of the transverse laser is tuned above a

certain threshold, the transition takes place. This transition has been analytically shown

to obey the Brazovskii mechanism of fluctuation-induced first order transition.

1.3 Outline

This dissertation is intended to be written in a self-contained manner and I try to provide

the prerequisites of each topic, at the beginning of the corresponding chapter/section.

In this section, we concisely illustrate the goals and results of each chapter.

Chapter 2: In order to study any impure system we first need to understand the

background pure system. In our case of charged particles in polar liquids, the most

relevant statistical quantity is the correlation function of the charge density fluctuations,

i.e. the charge-charge structure factor. In the first part of this dissertation, we present

and analyze the results of Molecular Dynamics (MD) simulations using the SPC/E
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model of water. Furthermore, we calculate the dielectric drag force on a slowly moving

charged particle, using a linear response theory. The discrepancy between the results

obtained from the MD simulations, and those predicted by a linear-response Debye-like

relaxation of the polarization field, signals the break-down of linear response. Next, by

means of the Leggett’s influence functional method, we propose an analytical model

for calculating the effective mass and self-energy of the impurity. To this end, we use a

model structure factor which is believed to capture the main features of a polar liquid.

We observe, in certain circumstances, a first order transition in the effective mass of

the impurity. When the system is viewed as a variant of polaron theory, the result can

be contrasted against the Fröhlich polaron, in which the transition from the extended

to the self-trapped state is smooth. We finally present the zero- and finite-temperature

phase diagrams.

Chapter 3: In order to systematically study the role of quantum fluctuations of both

the impurity and the medium, we adopt a model field theory, the so-called Landau-

Brazovksii field theory. The model has been used extensively in its classical form to

study the ordering transitions to lamellar phases of block-copolymers and liquid crys-

tals. According to Brazovskii renormalization program, even though the model pre-

dicts a second-order phase transition in mean-field approximation, accounting for the

fluctuations in spatial dimensions d ≥ 2 renders the transition discontinuous. Bra-

zovskii transition, is thus an example of the so-called fluctuation-induced first order

phase transitions. A quantum generalization of the Landau-Brazovskii model (QLB)

suggests that the first-order weak crystallization transition survives down to zero tem-

perature, namely in the presence of the fully quantum mechanical fluctuations of the

order-parameter (density field). It has been proposed that such emergent crystallization

can be realized in ultracold Bose condensates, through light-mediated interactions, in

transversely laser-pumped multimode cavities. When the laser intensity approaches a

threshold, the resonant Bogoliubov excitations on top of the condensate vacuum, ap-

pear at finite wave-vectors which satisfy a condition that depends on the geometry of
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the cavity.

The QLB theory and the proposed experiment seem to serve as promising candi-

dates for examining the role of quantum fluctuations with finite wave-vectors on the

polaron physics. Indeed, the laser intensity, an easily adjustable parameter in the exper-

iment, is directly related to the distance from the Brazovskii transition; by tuning the

laser intensity, one can tune the strength of fluctuations. Therefore, we adopt this model

field theory to study the role of the non-specific quantum fluctuations of a solvent on

the impurity and the phenomenon of solvation. We observe that far from the ordering

transition, where the nonlinearities of the theory can be neglected, at zero effective tem-

perature of the impurity particle, and also for frozen quantum fluctuations of the order-

parameter (Born-Oppenheimer limit), the effective mass of the polaron undergoes a

discontinuous transition (similar to the one from the phenomenological influence func-

tional approach). At effective zero temperature, increasing the quantum fluctuations

of the field gradually closes the jump of the effective mass at a second-order critical

point. Alternatively, including the thermal fluctuations yields a qualitatively similar re-

sult. In the absence of the thermal and quantum fluctuations of the field, the “critical”

coupling constant of the first-order transition of the effective mass, αc, is calculated via

a self-consistent approximation. This is shown to be proportional to the square root of

the distance from the mean-field Brazovskii transition, which matches reasonably well

with the numerical results. Therefore, away from the Brazovskii transition, the phase

diagram consists of two branches of polaronic states corresponding to extended and

self-trapped polarons, which are separated, in some regions of the phase diagram, by a

line of first-order transition, which terminates at a critical point.

Chapter 4: This chapter begins with a quick overview of the soliton solutions

the Gross-Pitaevskii equation. We discuss the density and phase solitons in atomic

systems, and the role of interatomic interactions. Next, we turn to the case of impurity-

induced solitons in BECs: close to the mean-field critical point of the QLB model,

the effects of nonlinearities are no longer negligible, and indeed completely alter the
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driving mechanism of the transition. We show, using the renormalized theory, that

in addition to the aforementioned polaronic states, a new impurity-induced solitonic

solution emerges, which correspond to the locally ordered structures of the symmetry-

broken phase. The size of these solitons (also called “droplets”) is of the order of

the correlation length, which does not diverge at the first-order transition. We show

that the soliton solutions are robust against Gaussian fluctuations, and also Derrick’s

instabilities. Gaussian fluctuations are shown to be irrelevant in spatial dimensions

d ≥ 2. Also according to Derrick’s theorem, soliton solutions of scalar field theories

are unstable against scaling transformations for d ≥ 2. We show that a finite-size

impurity is able to stabilize the solitons in any dimensions. Based on the currently

accessible ranges of the intra- and inter-species interactions via Feshbach resonance,

we estimate that many features of the theoretically explored phase diagram should be

realizable in a atomic mixture, composed of a dilute impurity-gas of 6Li atoms in a

condensate of 23Na atoms, and at temperatures of the order of nano-Kelvin.

Chapter 5: The analysis of mobile impurities near the quantum phase transitions

is generalized in this chapter to the case of quadratic coupling of the impurity to the

field. Inspired by the role of nonmagnetic impurities in itinerant-electron magnetic

systems, a model system is proposed to produce this form of coupling: a magnetically

polarizable mobile impurity interacting with the magnetization field of a system near

a magnetic phase transition. The basic idea is that the induced magnetization of the

impurity is proportional to the nearby magnetic field, which in turn is obtained by

an integration over the contributions of the magnetization from all over the sample.

In this chapter we focus mainly on the second-order transitions. The second-order

quantum phase transition model is borrowed from Herz-Millis theory. Furthermore, we

present the results for the case of fluctuation-induced first order transitions in magnetic

systems. These transitions which follow the general scheme of Brazovskii transition,

have been proposed to take place in paramagnon-magnetic roton phase transition, as

well as paramagnet-helimagnet transition in itinerant magnets [34, 35].
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We show in this chapter, that in three dimensions, the quadratic coupling induces a

first order transition in the effective mass of the impurity, even in the absence of a pre-

ferred ordering wave-vector of the host system. We compare this result with those of

the linear coupling formalism, where a minimum preferred wave-vector is required for

discontinuous self-trapping of the particle to occur. In lower dimensions, a quadratic-

type coupling alone cannot cause the first order transition of the effective mass, but like

the case of linear coupling a finite q0 is required for the localization to be discontinu-

ous. We also present the results of some perturbative calculations, in small and large

coupling limit.

Chapter 6: The appendix provides some supplementary materials as well as the

theoretical backgrounds of different theories, which have been used throughout the

previous chapters. These include (i) the details of MD simulations of chapter 2, (ii) an

overview of the standard polaron notion and their properties, and (iii) a brief introduc-

tion to fluctuation-induced first order transition and Landau-Brazovskii theory of weak

crystallization.
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CHAPTER 2

Charged Particles in Polar Liquids

In this chapter, in line with our final goal of studying (quantum) impurities in polar

liquids, we first aim at studying a ubiquitous and of course very important polar liq-

uid, water. We determine time correlation functions and dynamic structure factors of

the number and charge density of liquid water from molecular dynamics simulations.

Using these correlation functions we consider dielectric friction and electro-acoustic

coupling effects via linear response theory. From charge-charge correlations, the drag

force on a moving point charge is derived and found to be maximal at a velocity of

around 300 m/s. Strong deviations in the resulting friction coefficients from approxi-

mate theory employing a single Debye relaxation mode are found that are due to non-

Debye-like resonances at high frequencies. From charge-mass cross-correlations the

ultrasonic vibration potential is derived, which characterizes the conversion of acoustic

waves into electric time-varying potentials. Along the dispersion relation for normal

sound waves in water, the ultrasonic vibration potential is shown to strongly vary and

to increase for larger wavelengths.

The last section of this chapter is devoted to a heuristic approach towards a path-

integral formulation of the particle’s degree of freedom. However the approach has

some limitations which are discussed at the end of the section.
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2.1 Classical Particles in a Classical Dielectric Medium

The dynamic structure factor S(~k, ω) contains ample information on the structure and

dynamics of condensed-matter systems. For water, where each molecule consists of

one oxygen and two hydrogen atoms, various structure factors can be defined. The

oxygen-oxygen structure factor SOO is the dominant quantity for X-ray scattering ex-

periments: Since X-rays interact predominantly with the electrons, the electron density

is the relevant density related to the scattering cross section. In liquid water, due to

the high electronegativity of the oxygen atom, the electron density is mainly centered

around the oxygen atom and therefore one can determine the scattering cross section

to a good approximation from the oxygen-oxygen structure factor using an isotropi-

cally averaged form factor [36, 37], which can be conveniently obtained from quantum

chemistry calculations [38].

The recent usage of high intensity third generation synchrotron sources for inelastic

X-ray scattering makes it possible to measure S(~k, ω) for water over a wide range of

wave vectors and frequencies [39] from which Greens functions and interfacial water

dynamics have been reconstructed [40]. An interesting result of the inelastic scattering

studies was that the excitation spectrum of water is richer than that of simple liquids,

which is dominated by Rayleigh and Brillouin scattering. Water has two pronounced

peaks in S(~k, ω) with ω in the meV range and |~k| in the inverse Angstrom range that

are absent in simple liquids (see Fig. 2.1).

Neutrons on the other hand interact predominantly with the atomic nuclei, and have

a high scattering cross section for hydrogen atoms. To model neutron scattering ex-

periments one therefore has to take into account additionally the oxygen-hydrogen and

hydrogen-hydrogen structure factors SOH and SHH [37].

For the case of acoustic perturbations, which are associated with mass displace-

ments, the center of mass density structure factor Sρρ is relevant [41], while electro-

static fluctuations and correlations are embodied in the charge density structure factor
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Figure 2.1: (From Ref. [39]) (a) shows the imaginary part of the response function

Imχ(q, ω) for water at ambient conditions. The double peaks occur at q ' 3 (Å−1) and

ω ' 1 (meV) . (b) the response function χ(r, t) at times: 100 fs, 250 fs, and 600 fs. As

observed from the bottom panel in (b), the hydration ripples are dissipated at & 600 fs.

A two-dimensional real-space representation of the hydration structure around a point

negative charge. The red and blue rings correspond respectively to accumulation and

depletion of oxygen density with respect to the background. The distance between the

first and second hydration shells is ' 2.6 (Å).
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Sqq, which determines also the solvation and dynamics of charged particles in water,

like ions and electrons. In classical simulations, the structure factors Sρρ and Sqq can

be constructed to a good approximation from the three site-site structure factors SOO,

SOH , and SHH , which therefore contain the complete structural and dynamical knowl-

edge on the pair-correlation level. The importance of structure factors is due to a large

extent to the fact that they are related to the linear response functions via the fluctuation

dissipation theorem [42]. If, for example, one knows the charge density structure factor

Sqq then one can directly obtain the imaginary part of the dielectric response function.

This provides us with the polarization response of the medium to an external charge

or potential distribution. To give an explicit application, the Bethe formula relates the

stopping power of water for an electron to the dielectric response function of water

[43].

In the following sections we determine the auto and cross-correlation functions and

associated dynamic structure factors of the oxygen and hydrogen sites in liquid water

over a wide range of wave vectors and frequencies. From those functions we derive

diagonal and off-diagonal structure factors involving mass and charge densities. From

the charge-charge dynamic structure factor we derive the dielectric friction force on a

moving point charge via linear response theory. As a function of the point charge ve-

locity, the drag force exhibits a pronounced maximum around a velocity of the order

of 300 m/s. When compared with the standard theory for the friction of an electron

in liquid water that employs a single Debye relaxation mode approximation, we find

friction forces that are considerably larger. This deviation is due to non-Debye-like res-

onances at high frequencies in the simulated water susceptibility. The good agreement

between single-Debye mode theory and experimental data for the electron mobility in

water is nevertheless retained since the high-frequency domain is effectively preempted

by a high-momentum cutoff that in a crude manner accounts for dielectric saturation

effects. However, these non-Debye effects might be relevant for the kinetics and motion

of partial molecular charges.
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2.2 Dynamic Structure Factors

We define the auto- and cross correlation functions of the particle number and charge

densities in reciprocal space as

Fαβ(~k, t) =
1

N
〈α(~k, t)β∗(~k, 0)〉, (2.1)

where α, β = O,H, ρ, q. For α = O,H, ρ

α(~k, t) =
N∑

i=1

e−i
~k·~rαi (t), (2.2)

denotes the Fourier transform of the oxygen, hydrogen and molecule number density,

while

q(~k, t) = e
N∑

i=1

∑

α=O,H,H

zαe
−i~k·~rαi (t), (2.3)

is the Fourier transform of the charge density. Here, zα and ~rαi (t) are the partial charge

and the position of the atomic site α = O,H while ~rρi (t) is the position of the cen-

ter of mass of the i-th water molecule. The total number of water molecules is N ,

X∗ denotes the complex conjugate of X and e is the elementary charge. The density-

density autocorrelation function Fρρ(~k, t) is also called the intermediate scattering func-

tion. The static structure factor is the t → 0 limit of the correlation function, i. e.,

Sαβ(~k) = Fαβ(~k, 0) for α, β = O,H, ρ, q. The dynamic structure factor Sαβ(~k, ω) is

the Fourier transform of the correlation function,

Sαβ(~k, ω) =
1

2π

∫ ∞

−∞
Fαβ(~k, t)eiωtdt, (2.4)

The structure factor Sαβ(~k, ω) can be calculated from a simulation trajectory either by

Eq. 2.4 or from the alternative expression,

Sαβ(~k, ω) =
1

2π
〈α∆t(~k, ω)β∗∆t(

~k, ω)〉/(N∆t), (2.5)

where the Fourier transform of the densities for the observation interval ∆t is defined

by

α∆t(~k, ω) =

∫ ∆t

0

α(~k, t)eiωtdt, (2.6)
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The charge density correlation functions can be expressed in terms of the site-site cor-

relation functions as follows:

Fqq = e2z2
H (4FOO − 4FOH + FHH) , (2.7)

FOq = ezH (−2FOO + FOH) , (2.8)

The static structure factors Sρρ(k), Sqq(k), SOq(k) and Sρq(k) and the static site-

site structure factors SOO(k), SOH(k) and SHH(k) are shown in Fig. 2.2a. It is seen

that Sρρ(k) (filled circles) and SOO(k) (open circles) on the one hand and Sρq (filled

triangles) and SOq(k) (open triangles) on the other hand almost perfectly overlap with

each other. This reflects the fact that due to the small mass of H there is practically no

difference between the oxygen and the center of mass positions in a water molecule. In

the dynamic case there are differences as will be discussed below. The static site-site

correlation functions SOO(k), SOH(k) and SHH(k) are shown in Fig. 2.2 b normalized

by the site multiplicity. With this normalization they converge towards the same value

in the long wavelength limit, since in this limit the small differences in the atomic

positions are negligible with respect to the molecular position.

Figure 2.3 shows the autocorrelation functions Fρρ(k, t), FOO(k, t) and Fqq(k, t)

and the corresponding dynamic structure factors SOO(k, ω), Sρρ(k, ω) and Sqq(k, ω),

while Fig. 2.4 shows the cross correlation functions FOq(k, t) and Fρq(k, t) and the

corresponding dynamic structure factors SOq(k, ω) and Sρq(k, ω) for several values of

k = 3.5, 10.5, 20.5, 28.5 and 36.5 nm−1. Our results for the charge-charge corre-

lation function compare well with the calculations of [44], who also used the SPC/E

water model. Similar results for Fqq(k, t) and Sqq(k, ω) have also been obtained for the

TIP4P [45] and the BJH [46] water models.

If one compares FOq(k, t) with Fρq(k, t) for k = 3.5 nm−1, it is evident that the

high frequency oscillations present in FOq(k, t) at short times t < 0.3 ps are absent in

Fρq(k, t). Correspondingly, the peaks in SOO(k, ω) and SOq(k, ω) around ω ≈ 175 ps−1

are absent for Sρρ(k, ω) or much weaker for Sρq(k, ω). These differences can be ex-
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plained by librational modes of the water molecules. These are small rotations around

an axis through the center of mass of the molecules, which are manifest in the motion

of the oxygen atom but not in the center of mass motion.

Site-site correlation functions FOH(k, t) and FHH(k, t) and the corresponding struc-

ture factors SOH(k, ω) and SHH(k, ω) are plotted in Fig. 2.5. Since SOH(k, ω) exhibits

zero-crossings for several values of k we plot the absolute value.

Figures 2.6 - 2.9 show the logarithm of the dynamic structure factors SOO(k, ω),

Sρρ(k, ω), Sqq(k, ω), |SOq(k, ω)| and |Sρq(k, ω)| for the full k-ω-plane in 2D contour

plots. An enlarged view of the low-k and ω region for SOO(k, ω), obtained from sim-

ulations of a system containing ≈ 33000 water molecules and a box size of 10× 10×
10 nm3, is shown in Fig. 2.7. Also included in Fig. 2.7 are the dispersion relations,

ω(k) = csk, of propagating sound waves for hydrodynamic (dashed black line) and the

hypothesized fast sound (dashed red line) modes [47]. The hydrodynamic (adiabatic)

sound velocity is given by

cs =

√
γ

κTρm

, (2.9)

where γ = cp/cv is the adiabatic index, κT is the isothermal compressibility, ρm is

the mass density and cp and cv are the isobaric and isothermal heat capacities of water.

For the SPC/E water model at T = 300 K we obtain cp = 86.7 J/(mol K) and cv =

83.7 J/(mol K) from linearly fitting the temperature dependence of the enthalpy and

energy, respectively, yielding γ = 1.037. With κT = 45.5 · 10−11 Pa−1 and ρm =

0.999 kg/l [48] we obtain cs = 1510 m/s.

The literature discussion on the fast sound mode has a long and lively history: From

the analysis of the dynamic structure factor Sρρ(k, ω) obtained by MD simulations of

the ST2 [49] water model [50] found two excitations, which they attributed to prop-

agating modes with sound velocities of ≈ 1500 m/s and ≈ 3000 m/s. Many experi-

mental [51, 52, 53, 54] and simulation [55, 56, 57] studies have been performed since

and the current opinion is that rather than having two coexisting excitation modes, the

ordinary sound branch with a sound velocity of cs ≈ 1500 m/s exhibits a gradual tran-
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Figure 2.2: (a) Static structure factors Sρρ(k) (filled circles), SOO(k) (open circles),

Sqq(k) (squares), Sρq(k) (filled triangles) and SOq(k) (open triangles). Note that Sρq(k)

and SOq(k) are very similar, while SOO(k) and Sρρ(k) are virtually indistinguish-

able. (b) Static site-site structure factors SOO(k) (open circles), SOH(k) (diamonds)

and SHH(k) (crosses). All data are obtained by MD simulations of SPC/E water at

T = 300 K and p = 1 bar.

sition to the fast sound dispersion with a sound velocity of c′s ≈ 3500 m/s [47] at higher

wave vectors. In the k-range studied in this work, the Brillouin peak corresponding to

the propagating sound wave is quite broad and overlaps with the central Rayleigh peak,

which is due to diffusion of the water molecules. Consequently, it is only discernable

as a slight shoulder and not as a pronounced maximum in Figure 2.3. The Rayleigh

peak is reflected in Fig. 2.7 a by the slight bulge in the contour lines in between the two

dashed lines. As indicated in Fig. 2.7 b, with increasing wave vector k the position of

the shoulder moves from the position predicted by the dispersion relation of the normal

sound cs (filled spheres) towards the prediction of the dispersion relation for the fast

sound c′s (open spheres).
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Figure 2.3: Left panels: Normalized autocorrelation functions Fρρ(k, t), FOO(k, t) and

Fqq(k, t) for several values of the wave vector k. Right panels: Dynamic structure

factors SOO(k, ω), Sρρ(k, ω) and Sqq(k, ω) normalized by the ω = 0 value for several

different wave vectors k. All data are obtained by MD simulations of SPC/E water at

T = 300 K and p = 1 bar.
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Figure 2.4: Left panels: Normalized cross correlation functions FOq(k, t) and Fρq(k, t)

for several values of the wave vector k. Right panels: Dynamic structure factors

SOq(k, ω) and Sρq(k, ω) normalized by the ω = 0 value for several different wave

vectors k. All data are obtained by MD simulations of SPC/E water at T = 300 K and

p = 1 bar.

Figure 2.5: Left panels: Normalized site-site time correlation functions for several

values of the wave vector k. Right panels: Corresponding dynamic structure factors

normalized by the ω = 0 value for several values of the wave vector k. All data are

obtained by MD simulations of SPC/E water at T = 300 K and p = 1 bar.
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Figure 2.6: Left panels: Dynamic structure factors SOO(k, ω) (top row) and Sρρ(k, ω)

(bottom row) of SPC/E water at T = 300 K and p = 1 bar. Right panels: Close-up

view of the low ω region.
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Figure 2.7: (a) Low k and ω region of the dynamic structure factors SOO(k, ω) of SPC/E

water at T = 300 K and p = 1 bar, obtained from simulations of a system containing

≈ 33000 water molecules with a box size of ≈ 10 × 10 × 10 nm3. The black and

red dashed lines show the dispersion relations of hydrodynamic and the hypothesized

fast sound modes with sound velocities of cs = 1510 m/s and cs = 3500 m/s. (b)

Normalized slices at fixed k = 2.5, 3.5 and 4.5 nm−1. Filled and open circles show the

positions of the expected Brillouin peaks for the normal and fast sound velocities.

Figure 2.8: Left panel: Dynamic charge charge structure factor Sqq(k, ω) of SPC/E

water at T = 300 K and p = 1 bar. Right panel: Close-up view of the low ω region.
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Figure 2.9: Left panels: Dynamic structure factors SOq(k, ω) (top row) and Sρq(k, ω)

(bottom row) of SPC/E water at T = 300 K and p = 1 bar. Right panels: Close-up

view of the low ω region.
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2.3 Electrostatic Effects

2.3.1 Linear Response Formalism

We briefly review here the basic definitions of electrostatic linear response theory which

we will need in the following (see e.g. [46]). The dielectric response tensor χαβ is de-

fined by the relation between the polarization density ~P and the dielectric displacement

~D,

Pα(~r, t) =

∫

V

d3r′
∫ t

−∞
dt′χαβ(~r − ~r′, t− t′)Dβ(~r′, t′), (2.10)

For a homogeneous medium the corresponding expression in Fourier space is

Pα(~k, ω) = χαβ(~k, ω)Dβ(~k, ω), (2.11)

In an isotropic medium the response tensor can be decomposed into longitudinal and

transversal parts,

χαβ(~k, ω) =
kαkβ
k2

χ||(k, ω) +

(
δαβ −

kαkβ
k2

)
χ⊥(k, ω), (2.12)

with

χ||(k, ω) =
kαkβ
k2

χαβ(~k, ω), (2.13)

χ⊥(k, ω) =

(
δαβ −

kαkβ
k2

)
χαβ(~k, ω), (2.14)

The longitudinal response function is related to the charge density structure factor by

the fluctuation dissipation theorem [42],

Im
[
χ||(k, ω)

]
=

π

k2

ρ

ε0kBT
ωSqq(k, ω), (2.15)

We further have

qind(~k, ω) = −χ||(k, ω)qext(~k, ω), (2.16)

where qext(~k, ω) and qind(~k, ω) are the Fourier transforms of an external and the induced

charge density. In non-magnetic media and at low frequencies (quasistatic approxima-

tion), the transverse response function χ⊥(k, ω), does not enter the equations for the

electrostatic potential, and will not be studied further in this work. It can be obtained

directly from the polarization density correlation function [46].

34



2.3.2 Dielectric Friction and Drag Force on a Point Charge

Next, we derive an expression for the drag force on a charged point particle moving

through a medium with velocity ~v, using the linear response formalism. The external

charge density arising from the moving charge then is qext(~r, t) = q0δ(~r−~vt), where q0

is the charge of the particle and δ(~r) the Dirac delta function. Accordingly, the external

charge density in Fourier space is

qext(~k, ω) = 2πq0δ(~k · ~v − ω). (2.17)

The induced charge density follows from Eq. 2.16 as

qind(~k, ω) = −2πq0χ||(k, ω)δ(~k · ~v − ω), (2.18)

In the quasi-static approximation, the electric potential produced by the induced charge

density is given by

φind(~k, ω) =
1

k2

qind(~k, ω)

ε0

(2.19)

= − 1

k2

2πq0

ε0

χ||(k, ω)δ(~k · ~v − ω), (2.20)

Applying the inverse Fourier transform, we obtain

φind(~r, t) = −
∫
dω

2π

∫
d3k

(2π)3
φind(~k, ω)ei(

~k·~r−ωt) (2.21)

= −
∫

d3k

(2π)3

q0

ε0k2
χ||(k,~k · ~v)ei(

~k·~r−~k·~vt), (2.22)

The force on the moving particle due to the induced charge density then is ~F =

−q0∇φind(~r, t)|~r=~vt, which yields

~F = i
q2

0

(2π)3ε0

∫
d3k

~k

k2
χ||(k,~k · ~v), (2.23)

Without loss of generality we can assume ~v = v~ez and write the integral in spherical

coordinates,

~F = i
q2

0

(2π)3ε0

∫ 2π

0

dϕ

∫ 1

−1

ds

∫ kmax

0

dk~kχ||(k, kvs), (2.24)
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where s = cos(θ) and we have introduced an upper wave vector cutoff kmax.

It is easily seen, that the x and y components of ~F vanish and with ~F = F~ez we

obtain

F = i
q2

0

(2π)2ε0

∫ 1

−1

ds

∫ kmax

0

dkksχ||(k, kvs), (2.25)

Writing the response function as χ = χ′ + iχ′′, we have

χ′(k, ω) = χ′(k,−ω), (2.26)

χ′′(k, ω) = −χ′′(k,−ω), (2.27)

and therefore we obtain

F = − q2
0

(2π)2ε0

∫ 1

−1

ds

∫ kmax

0

dkksχ′′(k, kvs), (2.28)

The minus sign indicates here that F is a friction force in the direction opposite to that

of the velocity. As expected, only the imaginary part of the susceptibility contributes to

the rate of energy dissipation. Using Eq. 2.15 we can express the friction force in terms

of the charge density structure factor as

F = − q2
0ρv

4πε2
0kBT

∫ 1

−1

ds

∫ kmax

0

dks2Sqq(k, kvs), (2.29)

The same result appears as an intermediate step in the derivation of the Bethe stop-

ping power [58]. Figure 2.10 a shows the drag force F obtained using Eq. 2.29 and

the dynamic structure factor of SPC/E water at T = 300 K and p = 1 bar as shown

in Fig. 2.8. We find a pronounced dependence on the upper wave vector cutoff kmax;

the friction force increases with increasing cutoff. The highest cutoff we consider is

kmax = 70nm−1 since for higher wave vectors we expect the point-charge model em-

ployed in our classical MD simulations to become inaccurate. The friction force is

shown to exhibit a maximal value at a velocity around v = 300m/s and to slowly de-

cay for larger velocities, in stark contrast to Stokes friction. The concept of dielectric

friction has a long history [59, 60], but note that previous simulation estimates for the

friction of a moving charge in water used approximate theories and therefore could not
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resolve the velocity dependence of the friction force in full detail [61]. Although it is

clear that the dielectric friction and non-electrostatic friction are of course intimately

coupled and difficult to disentangle [62], the decrease of friction with increasing ve-

locity is certainly noteworthy and points to collective effects. For electrons in water,

we expect non-electrostatic friction effects to be rather small and therefore the effect

predicted in Fig. 2.10 a might be directly observable. In situations where the dielec-

tric adsorption spectrum has features at lower frequencies than in bulk water, such as

in water-filled protein cavities or close to membrane-water interfaces, we expect the

velocity of maximal friction to be shifted to lower values. In Fig. 2.10 b we plot the

friction coefficient γ = F/v as a function of the velocity, which monotonically decays;

here the crossover seen in the friction force is not directly seen. We note that in the

limit of ~v → 0 Eq. (28) simplifies and the friction coefficient is given by

γ(v = 0) = −2

3

e2ρ

4πε2kBT

∫ kmax

0

dkSqq(k, 0) (2.30)

and takes on a finite value, as seen in Fig. 2.10(c).
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Figure 2.10: (a) and (b) Drag force F and (c) friction coefficient γ = F/v of a charged

particle with charge q0 = e− as a function of the particle velocity v as obtained by

Eq. (28) (open symbols and solid lines). Different symbol shapes and line colors

denote results for different values of the upper wave vector cutoff kmax. In (b) and (c)

in addition results obtained using the single Debye peak approximation, Eq. (33), with

ε(0) = 80, ε(∞) = 1, and τ = 10 (ps) are shown (dashed lines). (d) Comparison of

the friction coefficient in the limit v → 0 as a function of the wave vector cutoff kmax

in Eq. (29) using the full susceptibility from the MD simulations (open symbols and

solid lines) with the single Debye peak approximation, Eq. (35) (dashed line). The

dynamic charge-charge structure factor used in the calculation is taken from SPC/E

water at T = 300 K and p = 1 bar.
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2.4 Break-down of Linear Response Theory; Limitations of the

Single Debye-peak Approximation

To understand the strong cutoff dependence of the calculated friction forces and fric-

tion coefficients in Figs. 9(a) and 9(c) it is useful to compare our results to the limiting

case of a single Debye relaxation mode, in which limit the calculation can be done ex-

actly. First we note that the standard electrodynamic relations between the polarization

density P , the displacement field D, and the electric field E, namely,

D = P + ε0E, (2.31)

and D = ε0εE, yield in comparison with our definition for the susceptibility in Eq.

(10) the relation

χ(k, ω) = 1− ε−1(k, ω) (2.32)

The imaginary part of the susceptibility then equals:

χ′′(k, ω) =
ε′′(k, ω)

|ε(k, ω)|2 (2.33)

The original Debye model for the dielectric response (polarization decay), ignores

the k-dependence:

ε(ω) =
ε(0)− ε(∞)

1− iωτ + ε(∞), (2.34)

which describes a single relaxation mode with characteristic time τ . Then the imaginary

part of the susceptibility for Debye model reads:

χ′′(ω) =
ωτ(ε(0)− ε(∞))

ε2(0) + ε2(∞)(ωτ)2
. (2.35)

We note that while ε′′(ω) has a maximum at ω = τ−1, the maximum of χ′′(ω) is

shifted to higher frequencies and occurs at ω = (ε(0)/ε(∞))τ−1. Inserting the single-

Debye approximation Eq. (33) into the expression Eq. (27) we obtain an approximation

for the friction force F. Choosing ε(0) = 80 as appropriate for the static dielectric

constant of SPC/E water, choosing the dielectric constant in the optical to equal the
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vacuum value ε(∞) = 1, which reflects the absence of high-frequency polarization

effects in the MD simulations, and a relaxation time of τ = 10 (ps), which again is

close to the actual relaxation time in SPC/E water, we obtain via numerical integration

of Eq. (27) the broken lines in Fig. 9(b) which correspond to three different values of

the upper momentum cutoff kmax. It is seen that for the smallest value kmax = 10 nm−1

denoted by a black broken line, the deviation from the result using the full susceptibility

from the MD simulations (black circles and black solid line) is quite modest, but grows

significantly for kmax = 20 nm−1 (red broken line and red data points) and for kmax = 30

nm−1 (blue broken line and blue data points). In Fig. 9(c) we show the single-Debye

peak approximation for the friction coefficient γ = F/v as a function of the velocity for

the three smallest values of the upper wave vector cutoff kmax (broken lines). We again

observe that for the smallest value kmax = 10 nm−1 (black broken line), the agreement

with the result using the full susceptibility from the MD simulations (black circles and

black solid line) is quite good, but significant deviations are seen for kmax = 20 nm−1

(red broken line and red data points) and for kmax = 30 nm−1 (blue broken line and blue

data points).

In the limit of vanishing velocity of the point charge, v → 0, the expression for

the friction coefficient using the single-Debye peak approximation can be calculated in

closed form and reads

γ(v = 0) = − 1

18π2

q2
0(ε(0)− ε(∞))τk3

max

ε0ε2(0)
. (2.36)

Approximating ε(0)−ε(∞) ≈ ε(0), defining the Bjerrum length as `B =
q20

4πε0ε(0)kBT

which for a unit charge q0 = e− has a value of roughly `B ≈ 1 (nm), and relating the

upper cutoff to an effective radius R as kmax = π/R, we obtain the simple expression

γ(v = 0) = − 2

9π
`BkBTτk

3
max = −2π2

9

`BkBTτ

R3
(2.37)

which has the same scaling and a very similar numerical prefactor as previously

derived expressions. The cubic dependence of the friction coefficient on the upper wave
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vector cutoff kmax explains why the data in Fig. 9 depend so sensitively on kmax. Putting

in numbers which presumably are appropriate for electrons in water, i.e., `B = 1 (nm),

τ = 10 (ps), kBT = 4 × 10−21 (J), kmax = π/R = 1010 m−1, we obtain the value

γ(v = 0) ≈ 2 × 10−12 (Ns/m). Through Einsteins relation D = kBT/γ we obtain

a diffusion constant of D ≈ 2 × 10−9 m2/s = 2 × 10−5 cm2/s, which agrees well

with experimental results for the electron diffusivity and previous theoretical estimates.

Incidentally, an estimate of the hydrodynamic friction for a particle with a radius R =

0.1 (nm) gives, using Stokes law with a water viscosity of η = 10−3 kg/(ms), a friction

coefficient of γhyd = 6πηR = 2 × 10−12 Ns/m which is identical to the dielectric

friction estimate. This reflects that dielectric and hydrodynamic friction effects have

very similar magnitudes for liquid water if the characteristic radii are chosen similarly

and of the order of R = 0.1 nm. The static friction coefficient γ(v = 0) according to

Eq. (35) is shown in Fig. 9(d) as a function of kmax by a broken line and compared to

the result using the full susceptibility in Eq. (29) (solid line and symbols). It is seen that

for kmax < 10 nm−1 the two calculations agree while for larger values of kmax the single

Debye peak approximation underestimates γ(v = 0) by roughly an order of magnitude.

To understand the cause of this deviation in more detail, we show in Figs. 10(a) and

10(b) the susceptibility χ′′‖(k, ω) for different fixed values of k as a function of ω. It

is seen that for small values of k at ω ≈ 175 ps−1 a sharp peak is present, which by

comparison with the results for Sqq in Fig. 2 is traced back to the fast librational motion

of the hydrogen atoms. Figure 10(c) compares χ′′‖(k, ω) in the small ω-region with

the Debye form, Eq. (33), for a few different values of ε(∞). The overall agreement

is not impressive, but the comparison shows that the small hump in χ′′‖(k, ω) around

ω ≈ 10 ps−1 is related to the dielectric Debye relaxation which only becomes accurate

in the limit k → 0.We conclude that the strong deviations in χ′′‖(k, ω) at finite values

of k from the simple Debye form lead to the pronounced deviations between the results

based on the numerical integration over the full χ′′‖(k, ω) and the single-Debye peak

approximation in Fig. 9.
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We finally want to explain how the upper wave vector cutoff kmax can be derived

for a toy model of a charge distribution with a finite radius R. Considering a moving

external charge that is distributed over a spherical shell with a radius R,

qext(~r, t) =
q0

4πR2
δ(|~r − ~vt| −R), (2.38)

the analogous calculation leading to the friction force, Eq. (28), gives for the present

case of a charged spherical shell the friction force

F = − q2
0ρv

4πε2
0kBT

∫ 1

−1

ds
∫ kmax

0

dks2Sqq(k, kvs)× J2
0 (kR) , (2.39)

where J0(x) = sinx/x is the first spherical Bessel function. For vanishing sphere

radius R→ 0 we recover the previous result from Eq. (28), but for finite R the squared

Bessel function in the integral leads to fast convergence of the momentum integration,

so that the upper integration boundary can be set to infinity. In an approximate way, the

Bessel function can be thought of as imposing a smooth upper momentum cutoff at a

value of roughly kmax ≈ π/R, so that the two expressions, Eqs. (28) and (37), are in

fact equivalent.

It remains to be discussed why we need to impose a rather small upper cutoff kmax =

π/R = 1010 m−1 in order to obtain a value for the friction coefficient that roughly

matches the experimental one for an electron. In fact, the need to impose a cutoff

kmax comes mainly from a breakdown of the assumption of linear response theory (in

addition, the susceptibility obtained with the point charge SPC/E water model is also

inaccurate at high momentum, but this effect is of secondary importance). As is easy

to see, the electric charge of an electron is too large for linear response to hold and

as a result of the strong polarization of the hydration water, a dielectrically saturated

shell forms around the point charge with a radius of a few water molecules. Outside

this radius linear response theory applies. A simple approximate remedy to this issue

is to use a heuristic cutoff, leading to Eq. (28), or to consider the friction force on

a charged shell with a radius R corresponding roughly to the dielectrically saturated
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region, leading to Eq. (37).

In the remainder of this chapter, we introduce a prescription for quantizing the par-

ticle’s degree of freedom, then we apply the method to our problem. We finally discuss

the limitations of this approach.

2.5 Path Integral Quantization of the Particle’s Degree of Freedom

Although one can treat heavy impurities (such as heavy ionic solutes) classically, lighter

particles like electrons suffer from stronger quantum fluctuations, and one needs to

quantize the corresponding degree of freedom. Caldeira and Leggett, in a seminal work

[63, 64], and in an attempt to study the macroscopic quantum phenomena, proposed

a prescription for calculating the tunneling rate of a quantum degree of freedom in a

double-well potential, subject to an Ohmic dissipative force. Suppose that the classical

equation of motion of the degree of freedom q(t), is given by

Mq̈(t) + ηq̇(t) +
∂V [q(t)]

∂q
= Fext(t), (2.40)

where M the inertia associated with q(t), and η is the “Ohmic” dissipation coefficient,

which results in the rate of dissipation ηq̇2, and is independent of frequency, etc. Finally

V [q(t)], is a conservative potential associated with q. They proved that the tunneling

rate can be calculated using

Ptunn = A exp(−B/~). (2.41)

Here A is expressible in terms of the fluctuations around the saddle-point “bounce” tra-

jectories between the wells of the potential and is therefore a function of the parameters

in Eq. 2.40. Next,B is the effective WKB exponent for the saddle-point path. They fur-

ther showed that in the presence of dissipation, the tunneling rate is always suppressed

compared to the dissipationless case. This also implies the loss of quantum coherence

of the coordinate, as a result of interaction with an energy-exchanging reservoir (envi-

ronment). Noting that “measurement” (or perturbing with classical probes) results in
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the collapse of wave-function in Copenhagen interpretation of quantum mechanics, this

theoretical model, based on a minimal set of ingredients, can serve as the explanation

of this collapse.

This formalism was later extended by Leggett to the cases where the coordinate q

is acted upon by a rather general (frequency dependent) integro-differential operator,

provided a number of commonly satisfied conditions hold. Let us assume that the

classical equation of the motion is described by:

K̂ q(t) = −∂V [q(t)]

∂q
, (2.42)

in which K̂ is a linear integro-differential operator, which obeys causality. In the case

of Eq. 2.40, K̂ reduces to: K̂ = Md2/dt2 + η d/dt. By means of the Fourier transform

f(ω) =

∫ +∞

−∞
f̂(t)e−iωtdt, (2.43)

we write the above equation as:

K(ω) q(ω) = −
(
∂V (q)

∂q

)
(ω), (2.44)

where K(ω) is now a complex function, and is generally related to an impedance-like

function. In the following subsection we briefly review the derivation of the Euclidean

action from the classical equation of motion, via Leggett’s prescription.

2.5.1 Leggett’s Quantization Prescription

According to Caldeira-Leggett model, the environment which is in general an energy-

exchanging heat reservoir, can be modeled by a bath of harmonic oscillators. The

spectrum of such bath (usually denoted by J(ω)) determines the induced dynamics, as

a result of the particle-environment interaction. In the specific case of Ohmic damping,

where the dissipative force is proportional to the conjugate velocity q̇, we have: J(ω) =
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η ω. The appropriate hamiltonian for such a coupled system is written as:

H(q, p; {xj, pj}) =
p2

2M
+ V0(q) +

∑

j

[
p2
j

2mj

+
1

2
mjωjx

2
j

]

−
∑

j

[Fj(q, p)xj +Gj(q, p)pj] + Φ(q, p). (2.45)

In the above equation (2.45), (q, p) and {(xj, pj)} are the (coordinate, conjugate mo-

mentum) pairs of the particle and harmonic oscillators of the environment, respectively.

Also M , {mj} and {ωj}, represent the bare mass of the particle, masses of the envi-

ronmental harmonic oscillators, and the frequencies of the harmonic oscillators, re-

spectively. On the right hand side, the first line is the sum of the hamiltonians of the

decoupled particle and bath system. The first term in the second line is the coupling

between the particle and bath, which must be linear in the bath coordinates. Note that

although Fj and Gj are labeled by the oscillators’ indices, they are independent of the

dynamical variables {(xj, pj)}. Finally Φ(q, p) is a real function which might in turn

depend on the parameters mj, ωj, Fj, Gj but not on dynamical variables.

For the Leggett’s prescription to be valid, there are constraints to be imposed on the

Hamiltonian:

(I) The assumption of “weak” perturbation due to environment. This allows us to

neglect the nonlinear effects of the bath, effectively keeping only the linear terms in

bath degrees of freedom.

(II) The condition of “strict linearity”. This means that the microscopic interaction

Hamiltonian of the particle and environment, can only contain the terms either (a) linear

in particle variables (q, p) when coupled to environment, or (b) quadratic in particle

variables when the environment variables are absent.

(III) Time-reversal symmetry. This is not an essential assumption but simplifies the

derivation.

Occurrence of the terms which include higher order terms than linear, in environ-

mental degrees of freedom implies that the assumption of “weak” perturbation due to
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environment is no longer valid and one needs to resort to other techniques such as adi-

abatic approximation. In order for the second condition to hold, we note that Fj, Gj

must be linear in (q, p), whereas Φ(q, p) can be bilinear. This allows us to write down

the interaction term in the following form:

Hint = − p

M

∑

j

Fjxj − q
∑

j

1

mj

Gjpj +
1

2
ap2 +

1

2
bq2, (2.46)

where a, b are constants. The last two terms can be absorbed in the Hamiltonian of the

bare particle, resulting in renormalization of the mass, and a shift in potential V0(q),

M̃−1 = M−1 + a (2.47a)

Ṽ (q) = V0(q) +
1

2
bq2. (2.47b)

After a set of canonical of the coordinates and Legendre transformations, we obtain the

total Lagrangian of the system:

L(q, q̇; {x̃j, ˙̃xj}) =
1

2
M̃ q̇2 − Ṽ (q) +

1

2

∑

j

m̃j( ˙̃x2 − ω̃2
j x̃

2
j)

− q
∑

j

Cjx̃j − q2
∑

j

C2
j

2m̃jω̃2
j

. (2.48)

It is now convenient to introduce the spectral density of the environment as:

J(ω) ≡ π

2

∑

j

C2
j

m̃jω̃j
δ(ω − ω̃j), (2.49)

and also a complex function of ω in the lower half of the complex plane:

K̄(ω) ≡ −ω2

[
2

π

∫ ∞

0

dω′
J(ω′)

ω′(ω′2 − ω2)
+ M̃

]
, (2.50)

such that ImK̄(ω) = J(ω) for |Imω| → 0. Now if we calculate the equation of motion

from Eq. 2.48, and eliminate the environmental degrees of freedom, we get for q(ω),

the real-time Fourier transform of q(t):

K̄(ω)q(ω) = −
(
∂Ṽ (q)

∂q

)
(ω) (2.51)
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where ω = Reω+ iε and ε→ 0+. Therefore K̄(ω) is identical to K(ω) for |Imω| → 0.

Now following the Caldeira-Leggett prescription, we get for the effective Euclidean

action in “imaginary-time”:

Seff[q(τ)] =

∫ +∞

−∞

[
1

2
M̃ q̇2 + Ṽ (q)

]
dτ

+
1

2

∫∫ +∞

−∞
dτdτ ′α(τ − τ ′)[q(τ)− q(τ ′)]2. (2.52)

We call the last term ∆Seff. In the above equation we α(τ − τ ′) is given by:

α(τ − τ ′) ≡ 1

2π

∫ ∞

0

J(ω)e−ω|τ−τ
′|dω. (2.53)

Now by defining the Fourier transform in the imaginary-time domain for the coordinate

q,

q̃(ω) ≡
∫ +∞

−∞
q(τ)e−iωτdτ, (2.54)

we get for ∆Seff:

∆Seff = − 1

2π

∫ +∞

−∞
[α(ω)− α(0)]|q̃(ω)|2dω, (2.55)

where we have

α(ω) =
1

(2π)2

∫ +∞

−∞
dτ
∫ ∞

0

dω′e−ω
′|τ |e−iωτJ(ω′)

=
1

2π2

∫ ∞

0

ω′J(ω′)

ω′2 + ω2
dω′ (2.56)

From Eq. 2.55, we get:

Seff =
1

2π

∫ +∞

−∞
dω
[

1

2
M̃ω2 + π−1ω2

∫ ∞

0

dω′
J(ω′)

ω′(ω′2 + ω2)

]
|q̃(ω)|2 + SV , (2.57)

where,

SV ≡
∫ +∞

−∞
dτV [q(τ)], (2.58)

is the action of the potential V [q(τ)]. From comparing Eq. 5.33, it is concluded that if

the classical equation of motion governing q(ω) is,

K(ω)q(ω) = −
(
∂V (q)

∂q

)
(ω), (2.59)
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then the effective action is given by the following expression:

Seff[q̃(ω)] =
1

2π

∫ +∞

−∞

1

2
K(−i|ω|)|q̃(ω)|2dω + SV [q̃(ω)]. (2.60)

The prefactor of q̃(ω), for the simple Ohmic dissipation case, reduces to 1
4π

(Mω2 +

η|ω|).

The Leggett’s prescription facilitates the derivation of effective Euclidean action

for a coordinate (corresponding to a single impurity in our problem), from the classical

equation of motion, which in turn is expressible in terms of the influence functional

K(ω) which is induced by the bath. In other words, by integrating out the harmonic

degrees of freedom of the bath, we obtain the reduced density matrix of the particle, in

terms of the influence functional. This implies that given a (phenomenological) influ-

ence functional which is—as mentioned above—related to an impedance-like quantity

of the bath, we can construct the effective action for the particle. However we note that

in order for the prescription to be strictly valid, the aforementioned three conditions

must be satisfied. We will see below that the second criterion runs into difficulties in

our system and some approximations are required in order to be able to utilize Leggett’s

formalism.

2.6 Influence Functional and Effective Action of a Charged Parti-

cle in a Dielectric Medium

In this section, we essentially follow the same lines as the beginning of this chapter,

namely we find the dielectric drag force acting on a slowly moving particle. Inspired

by the Leggett’s formalism sketched above, we would like to find the influence func-

tion of the environment, from which the effective Euclidean action is straightforwardly

concluded. So we begin with deriving the classical equation of motion of a particle in

a dielectric medium. We wish to write it in the following form:

K(ω)R(ω) = F (ω). (2.61)

48



Here R denotes the coordinate of the particle and plays the role of q in the original

formalism. We note that the above formula is valid for a one dimensional system. A

more general form reads:
←→K (ω).R(ω) = F(ω). (2.62)

where
←→K (ω) is now the influence functional tensor, R the position vector of the particle

and F, the dielectric force which is naturally expected to be in opposite direction as

Ṙ(t).

We now start with a single classical charged particle which is moving very slowly

at velocity ~v in a certain direction. As a result of the electrostatic interaction between

the particle and surrounding medium, the medium gets polarized, as a consequence of

the opposite displacements of positive and negative partial charges of the constituents

of the medium. Thus as the particle moves through the medium, it has to drag the cloud

of polarization. This clearly amounts to the increase of the inertia or effective mass

of the particle. One can think of this problem (at this level) as the classical version of

the polaron problem. Now Leggett’s prescription is essentially designed to transform

this classical problem to its quantum mechanical counterpart. Therefore one might

hope that by deriving the influence function and then performing the consequent quan-

tization, one would find the effective action of a polaron. However the strict linearity

condition on the coordinate of the particle, inhibits us from making further mathemat-

ical progress, as this coordinate appears not quadratically but in fact as exp(iq.R(t)),

where q is the wavevector. We, however, note that starting off directly with quantum

mechanical hamiltonian does not resolve this issue. In fact a similar mathematical dif-

ficulty arises in the polaron problem.

Now using the expression obtained for the dielectric force on the particle we get:

F(t) = −i
∫

d3q

∫
dω
[
e2q

2π2q2
(ε−1(q, ω)− 1)

×
∫

dt′

2π
exp[iq.(R(t)−R(t′))− iω(t− t′)]

]
. (2.63)
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where e is the charge of the particle and where ε(q, ω) is the dielectric function of the

medium. Now the classical equation of motion for the particle reads,

MR̈ = F[{R(t)}] (2.64)

If the force F[{R(t)}], after Fourier transform to frequency domain, could be written in

the form
←→K (ω).R(ω), we could deduce the influence function. It is not hard to see that

such a simplification can be achieved by approximating the exponential exp[iq.(R(t)−
R(t′))] by 1− iq.(R(t)−R(t′)). This approximation is only valid for slowly moving

particles where q.R(ω)� 1. Therefore we can rewrite the force as:

F(t) = −i
∫

d3q

∫
dω exp(−iωt)

[
e2q

2π2q2
(ε−1(q, ω)− 1)

]
(−iq.(R(ω)−δ(ω)R(t))).

(2.65)

Neglecting the zero frequency part, we arrive at:

F(ω) = − e
2

2π

∫
d3q

[
q

(2π2)q2
(ε−1(q, ω)− 1)

]
(q.R(ω)). (2.66)

We note that this force is proportional to −e2, hence negative and insensitive to the

sign of the charge. From this we find the relation for influence function in terms of the

dielectric function of the medium:

←→K (ω) = − e
2

2π

∫
d3q

[
qq

2π2q2
(ε−1(q, ω)− 1)

]
(2.67)

Now using Leggett’s formalism, we can derive the effective Euclidean action of the

particle. Further by means of the fluctuation-dissipation theorem, we can recast the

above equation (expressed in terms of dielectric function) in terms of the charge-charge

structure factor of the medium S(q, ω) = 〈|ρ(q, ω)|2〉, which is the ensemble average

of the charge density fluctuations ρ(q, ω).

Seff = −
∫ β~

0

1

2
M |Ṙ|2+αβ−1

∑

ωn

∫
d3q

(2π)3

1

q4
S(q, ωn)

×
∫∫ β~

0

dtds exp[−iq.(R(t)−R(s)) + iωn|t− s|].

(2.68)
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Here α is the self-interaction coupling constant which depends on the charge of the

particle and other characteristic constants of the system. Next, β = 1/kBT is the

inverse temperature and ωn = 2πn/β is the bosonic Matsubara frequency. We note

that this action is derived for the Coulomb potential Vq = 1/q2. Note that in order to

retain the original form of R-dependence we have here (and after deriving the influence

function), re-exponentiated the coordinate. With the above definition of the effective

action, the equilibrium partition function of the particle can be written the following

functional integral as: Z =
∫
D[R(t)] exp(Seff[R(t)]/~), where D[R(t)], denotes the

path-integration measure.

Equation 2.68 suggests that one approximate strategy to study the quantum particles

in dielectric media, could be to derive the structure factor and substitute that in Eq.

2.68. We shall mention here that the approximation of the quadratic dependence on

R, becomes more and more accurate as the mass of the impurity is increased. The

heavier the impurity, the less significant the zero point motion of the particle and the

more localized the wave-function, hence the more valid the Taylor expansion. In the

language of polaron problem, this corresponds to large self-interaction, which causes

the self-trapping localization. We also note that from the results of the MD simulations,

we only can extract the classical S(q, ω) at room temperature. Hence the quantum

fluctuations of the environment are absent. The full quantum mechanical fluctuation-

dissipation theorem between the response function and structure factor reads:

Im{χ(q, ω)} =
2π

~
(1− e−β~ω)S(q, ω). (2.69)

This implies that the structure factor is not an even function in the full quantum me-

chanical form and is in fact obtained by a detailed-balance equation:

S(q,−ω) = e−β~ωS(q, ω), (2.70)

which in the classical limit β~ω → 0, reduces to the classical form.

The dynamic structure factor of polar liquids, as numerically calculated for the case

of water, reveals pronounced peaks in (q, ω)-plane, in the range of small frequencies.
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One can fit the numerical results using a combination of simpler solvable models, e.g.

Debye-like dynamics. For the imaginary part of the dielectric response function χ(q, ω)

is in general related to the structure factor via fluctuation-dissipation theorem. In the

classical limit the relation takes the form: Im{χ(q, ω)} = 2πβωS(q, ω). Fitting the

response function χ(q, ω) to the actual numerical data, suggests the following general

form [46]:

Im{χ(q, ω)} = 4πβS(q)

[
A1τ1

1 + ω2τ 2
1

+
A2τ2

1 + ω2τ 2
2

+
A3

2

(
γ

(ω0 + ω)2 + γ2
+

γ

(ω0 − ω)2 + γ2

)]
, (2.71)

in which A1, A2, τ1, τ2, γ, are free parameters which are obtained by fitting. Based on

this analytical model, obtained from the numerical analyses, we calculate the polaron

properties in a model polar liquid.

For simplicity, we focus on the major component of the dynamics corresponding

to the dissipative mode, namely the first term in the brackets in Eq. (2.71). The static

structure factor S(q), also has a peak at q = q0. The peaks in the structure factors

can be well modeled by Lorentzians. Following this common approach we propose the

general form,

S(q) ∼ 1

(q − q0)2 + (∆q)2
. (2.72)

In the above equation, ∆q determines the width of the peak of the structure factor. We

note that the sum-rule requires that the static structure factor satisfies

S(q) =

∫ +∞

−∞
dωS(q, ω), (2.73)

which is the equal-time correlation of the fluctuations (a snapshot of the system). We

now insert this phenomenological model in the effective action of the particle. The goal

is to find the self-energy and the effective mass of this particle as a result of interaction

with this dissipative local modes.
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2.6.1 Zero Temperature Limit

From previous sections effective Euclidean action according to Leggett’s formulation,

SEeff

[
R(t)

]
= −m

2

∫ ∞

−∞
dt |Ṙ|2−

∫∫ ∞

0

dtds
∫ ∞

0

dω

2π

←→K (ω)eiω|t−s| |R(t)−R(s)|2 ,

(2.74)

where,

←→K (ω) = −e
2

ε0

∫
d3q

(2π)3

qq

q2
Im
{

1

ε(q, ω)

}
, (2.75)

In the original Leggett’s formalism, the coupling between the particle and medium is

linear. It is not the case in our problem; the force is not linear in particle’s degree of

freedom. In order to match it with the Leggett’s method, we expanded the exponential

interaction to the linear order in terms of the generalized coordinates. The justification

for such a generalization is the following. In the case of Feynman theory, where the

electron interacts with a single dispersionless mode, the formulation matches with that

of Leggett’s where the linear coupling is a basic assumption, if we expand the force to

the linear order. In our case, the electron is coupled to a distribution of modes which

does not make any fundamental difference with Feynman’s problem. Thus the natural

and reasonable way to generalize the Leggett’s theorem to find the effective action

in our case seems to be the same. Therefore we re-exponentiate the linear term to the

original form of the force. Eventually the effective Euclidean action takes the following

form.

Seff = −m
2

∫ ∞

0

dt |Ṙ|2 +
e2

ε0

∫∫ ∞

0

dtds
∫

d3q

(2π)3

∫
dω
2π

× 1

q2
eiω|t−s|eiq.(R(t)−R(s))Im

{
1

ε(q, ω)

}
, (2.76)

We drop the superscript ”E” denoting the Euclidean action hereafter. Note that a minus

sign is already included in the effective action such that, e−βF =
∫
eS D[R].
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• Variational Method

Since the path integrals with the above actions are not analytically solvable, we intro-

duce the following trial action with two free parameters to be fixed. The trial action is

of the following form,

S1 = −m
2

∫ β

0

|Ṙ|2dt− C

2

∫∫ β

0

|R(t)−R(s)|2e−D|t−s|dtds, (2.77)

The free parameters are intuitively chosen in a way to determine two physically separate

characteristics of the interaction. C is the strength of the interaction, while D shows

how fast the distortions are mediated through the medium i.e. the temporal Kernel of

interaction. This form of trial action reflecting pure dissipation is in consistence with

the physical intuition of the polar liquids as mentioned before. The Debye-like decay is

the most important contribution of the modes in polar liquids, approved by numerical

methods. Exponent D, represents this time constant.

In the path integral representation of the free energy, the following relation exists

between F, F1, S and S1, denoting the free energy of the original system, free energy

of trial action, original Euclidean effective action and trial Euclidean effective action,

respectively,

F ≤ F1 +
1

β
〈S − S1〉, (2.78)

At the zero temperature limit the dominant term in the free energy is the ground state,

such that we can replace the effective energy of both the original and the trial actions

by the ground state energies which are denoted by E and E1 respectively.

1

β
〈S − S1〉 = A+B, (2.79)

where,

A =
1

β

e2

ε0

∫∫ ∞

0

dtds
∫

d3q

(2π)3

∫
dω
2π

× 1

q2
eiω|t−s|

〈
eiq.(R(t)−R(s))

〉
Im
{

1

ε(q, ω)

}
, (2.80a)
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B =
1

β

C

2

∫∫ β

0

〈|R(t)−R(s)|2〉e−D|t−s|dtds, (2.80b)

Note that all the averages are defined with respect to the weights, eS1 . For later con-

venience we define a new parameter in terms of the primary variational parameters,

v2 = D2 + 4C/Dm.

For brevity we call the last term in the integrand of Eq. (2.80a) , 〈exp〉(0) hereafter

(the superscript (0), becomes clear in the next section). This term is calculated by

Feynman for the above-mentioned weights [65, 66, 67, 68],

〈exp〉(0) =

∫
exp [iq.(R(t)−R(s))]eS1D[R]∫

eS1D[R]

= exp

[
−2~Cq2

mv3D

(
1− e−v|t−s|

)
− ~D2q2

2mv2
|t− s|

]

= exp

[
− ~q2

2mv2
G(|t− s|)

]
, (2.81)

where,

G(u) = D2u+
v2 −D2

v

(
1− e−vu

)
, (2.82)

Now we may calculate B,

B =
1

β

C

2

∫∫ β

0

〈|R(t)−R(s)|2〉e−D|t−s|dtds

=
3C

vD
, (2.83)

which can be readily approved by taking the second derivative of 〈exp〉(0) with respect

to q.

E1 =
3

2
(v −D), (2.84)

Using Eqs.[2.78,2.79], we obtain the upper bound for the original ground state energy,

E =
3

4

(v −D)2

v
− A, (2.85)

At this step we have to minimize Eq.[2.85] with respect to variational parameters D, v.

These parameters are going to be used in the effective mass calculation later in this
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paper. The minimizing set of variational parameters, we call (D∗, v∗) gives us an upper

bound of the ground state energy. But let us first work out the integral in Eq. (2.80a).

A =
1

β

e2

ε0

∫∫ ∞

0

dtds
∫

d3q

(2π)3

∫
dω
2π

× 1

q2
eiω|t−s|〈eiq.(R(t)−R(s))〉Im

{
1

ε(q, ω)

}

=
e2

ε0

∫∫ ∞

0

dtds
∫

d3q

(2π)3

∫
dω
2π

× 1

q2
eiω|t−s| exp

[
− ~q2

2mv2
G(|t− s|)

]
Im
{

1

ε(q, ω)

}
, (2.86)

The integration over imaginary times t and s, needs to be discussed here. The upper

limit of the integrals in the path-integral representation of the free energy is the inverse

temperature which goes to infinity at zero temperature limit.

lim
β→∞

∫∫ β

0

dtds f(|t− s|) = lim
β→∞

∫ β

0

2(β − u)f(u)du

= 2β

∫ ∞

0

f(u)du, (2.87)

for fast enough decaying function f(u), and u = |t−s|. Equation (2.76) can be slightly

simplified,

A =
4e2

ε0

∫ ∞

0

du
∫

d3q

(2π)3

∫
dω
2π

× 1

q2
e−iωu exp

[
− ~q2

2mv2
G(u)

]
Im
{

1

ε(q, ω)

}
, (2.88)

Therefore, Eq. (2.85) reduces to the following,

E =
3

4

(v −D)2

v
− 4e2

ε0

∫ ∞

0

du
∫

d3q

(2π)3

∫
dω
2π

× 1

q2
e−ωu exp

[
− ~q2

2mv2
G(u)

]
Im
{

1

ε(q, ω)

}
, (2.89)

(2.90)

In Fig. (2.11), we see the energy landscape as a function of the variational parameters

(D, v), for three different α’s, and for specific ∆q, τ−1. Two minima coexist for in-

termediate coupling constants which defines the coexistence region, while one of them

fades away beyond that.
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Figure 2.11: The energy-landscape for (a) below the transition, (b) the coexistence

region, and (c) above the transition. In the landscapes of (a) and (c) there exists only

one minimum, whereas in the coexistence range (b), the two minima coexist. This is a

signature of the first order transition.

57



• Effective Mass

In order to calculate the effective mass, we use a mathematical trick, which was used

by Feynman. We add a term, U(t− s) to (R(t)−R(s)) in the exponential, assuming

that particle in moving with a constant ”velocity” U, in the imaginary time domain.

Then we expand the exponential to the second order in U. We eventually come up with

a modified 〈exp〉, defined in the previous section,

〈exp〉 = exp [− ~q2

2mv2
G(|t− s|)]

× (1 + iq.U |t− s| − 1

2
q2U2|t− s|2 cos2 θ +O(U3))

=〈exp〉(0)[1 + iq.U |t− s| − 1

2
q2U2|t− s|2 cos2 θ

+O(U3)]

=〈exp〉(0) + 〈exp〉(1) + 〈exp〉(2) + ... , (2.91)

where θ is the angle between U and k. The linear term vanishes after the integration

because of isotropicity. We are now left with a U-independent term and a quadratic

term in U, whose coefficient along with the kinetic term’s coefficient gives us the ef-

fective mass.

The effective action turns out to be of the following form,

〈SEeff〉 =

〈
− m

2

∫
|Ṙ|2 dt

〉
+ A+ A2(U), (2.92)

where A, is the interaction part in the U = 0 case, discussed in the previous section and

A2(U), is the ”velocity”-dependent term and takes the form,

A2(U) =− 1

2
U2 4βe2

ε0

∫ ∞

0

du
∫

d3q

(2π)3

∫
dω
2π

× u2 cos2 θ e−ωu exp

[
− ~q2

2mv2
G(u)

]
Im
{

1

ε(q, ω)

}
, (2.93)

The second equality results from zero temperature approximation discussed above

and also integration over θ. The coefficient ofU2 in the energy is equal to m∗

2
. Therefore
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Figure 2.12: Effective mass against coupling constant. Other parameters are set at

∆q = 0.3 q0 and τ = 10. As shown in the picture, the polaron mass remains around

the bare mass for coupling constants α . 55. This corresponds to panel (a) of Fig.

(2.11). As the coupling in enhanced, the effective mass undergoes a discontinuous

jump by two orders of magnitude. This corresponds to the self-trapped polaron, panel

(c). In between there exists a narrow range of the coupling constant, where the energy

landscape develops two coexisting minima; see panel (c).
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Figure 2.13: Zero-temperature phase diagram. The heat map of the critical coupling

constant, as a function of the width of the static structure factor in q and that of the

dynamic part τ−1. The “critical” region, indicates the region where the first order tran-

sition exists. Therefore the effective mass is becomes discontinuous at the “critical”

coupling constant. The value of this critical coupling can be read off the color code

sidebar. The “No Transition” region is connected to the critical one by a line of second

order transition, where the gap of the effective mass closes. We note that some values of

the critical coupling, obtained from this model, might be unrealistic in actual systems.
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the effective mass turns out to be,

m∗

m
= 1− 2

β

A2(U)

U2

∣∣∣∣
(D∗,v∗)

, (2.94)

where (D∗, v∗), are the values of the variational parameters minimizing the free energy.

The result of the effective mass calculation is shown in Fig. (2.12). There coexistence

region is specified in the figure. This type of behavior is observed for a so-called ”Crit-

ical” area marked in Fig.[2.13], where ∆q and τ , lie in a specific range. Therefore the

border of this critical area defines a second order transition line which separates it from

no transition part.

2.6.2 Finite Temperature

We derived the effective action in the case of zero temperature limit using the Leggett’s

influence functional theorem in Eq.[2.76], where the only allowed process is dissipating

energy from the particle to the environment through the term e−ω|t−s|. However in the

presence of thermal fluctuations, absorption processes play role as well as emission.

Mathematically these processes are reflected in a more general form: {N+1}e−ω|t−s|+
{N}eω|t−s|, which is the result of integration over a bath of harmonic oscillators at finite

temperature. Here N = [exp (β~ω)− 1]−1, is the Planck distribution function.

We now use the theory of a polaron at finite temperature [69], where we introduce a

general form of the trial action,

S1 = −m
2

∫ β

0

|Ṙ|2dt− 1

2

∫ β

0

∫ β

0

K(|t− s|)|R(t)−R(s)|2dtds, (2.95)

the kernel of the trial action, K(|t − s|) ≡ K(u), reduces to Ce−D|t−s| = Ce−Du, in

our case, allowing both negative and positive values of minimizing D, for emission and

absorption of the excitations of medium respectively. Defining the Fourier components

of the kernel in terms of Matsubara frequencies ν = 2πn
β

, we have,

K(u) =
1

β

∑

ν

K̃n eiνu, (2.96)
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where ν = 2πn/β, and for the aforementioned form of trial action, we have,

K̃ν =
2CD

ν2 +D2
, (2.97)

Similar to the vase of zero temperature, we would need to calculate the average of the

actions for which we need,

〈exp〉(0) = exp

[
−~q2

2m
Λ(|t− s|)

]
, (2.98)

where,

Λ(|t− s|) = Λ(u) =
4

β

∑

ν>0

gν(1− cos νu), (2.99a)

and,

gν = [ν2 + 2(K̃0 − K̃ν)]−1

=
1

ν2 + 4
D

ν2

D2+ν2

, (2.99b)

We can still use the first equality of Eq.[2.87], provided that the 〈exp〉(0), is a function

of |t−s|. Following the general formalism of variational method, discussed in previous

sections,

F = F1 − (A+B), (2.100)

for which we need to calculate F1, the free energy associated with the trial action, and

eventually minimizing F with respect to variational parameters. According to [69], B

can be easily calculated having the trial action in hand,

B =
3

β

∑

ν>0

(
1− ν2gν

)

=
3

β

∑

ν>0

4C
D

ν2

D2+ν2

1 + 4C
D

ν2

D2+ν2

, (2.101)

The last equality could be easily verified in a few lines of simple algebra. The free

energy of trial action F1, also satisfies the following differential equation,

dF1

dC
=
B

C

=
3

β

∑

ν>0

4
D

ν2

D2+ν2

1 + 4C
D

ν2

D2+ν2

, (2.102a)
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with the boundary condition,

F1(C = 0) = 0, (2.102b)

which can be easily solved,

F1 =
3

β

∑

ν

ln

(
1 +

4

D

ν2

D2 + ν2

)
, (2.103)

• Effective Mass

Using the method of Feynman we calculate the effective mass at finite temperature.

This results in the following expression:

m∗

m
=
β2

24

[∑

ν>0

gν

]−1

, (2.104)

The effective mass experiences a first order transition at zero temperature as well as

finite temperatures up to a certain point depending on the phase-space parameters

(∆q, τ−1). Figure (2.14) shows αc, as a function of ∆q and temperature, at fixed τ−1.

As we see in figure (2.14), the transition happens at finite temperature as well, up to a

certain temperature which depends on ∆q and τ . According to the above figure, in the

presence of thermal fluctuations, the first order transition of effective mass takes places

at weaker couplings and goes away beyond a specific temperature.
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Figure 2.14: Finite temperature phase diagram at τ = 10. At each ∆q/q0, i.e. width of

the peak, the critical coupling constant αc is reduced upon increasing the temperature

β−1. The discontinuity in the effective mass closes at a finite temperature.
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2.7 Conclusions

Using classical MD simulations of the SPC/E water model at ambient pressure and

room temperature, we determine the auto- and cross-correlation functions and associ-

ated dynamic structure factors of the oxygen and hydrogen sites in liquid water over a

wide range of wave vectors and frequencies. Based on the diagonal and off-diagonal

structure factors involving mass and charge densities we consider dielectric friction and

electro-acoustic coupling effects in liquid water.

On the linear-response level, the friction force on a moving point charge is maxi-

mal at a velocity around v = 300 (m/s) and decays for larger velocities. This quasi-

resonant friction feature is reminiscent of frequency-dependent Stokes friction, which

also shows deviations from a linear velocity dependence. Although our calculation is

strictly valid only on the linear-response level and thus neglects the nonlinear effects

the presence of a point charge has on the water surrounding, this finding is interest-

ing and points to complex dynamic phenomena for moving charges in liquid water.

This might be even biologically relevant for electron and proton charge-transfer pro-

cesses in proteins. In situations where the dielectric adsorption spectrum has features at

lower frequencies than in bulk water, such as in water-filled protein cavities or close to

membrane-water interfaces, we expect the velocity of maximal friction to be shifted to

lower values. The friction forces we calculate are for elevated momentum cutoff values

considerably larger than predicted by the single Debye relaxation mode approximation,

which is due to non-Debye-like resonances related to librations at high frequencies in

the simulated water susceptibility. For an electron a sufficiently low momentum cutoff

basically eliminates the high-frequency domain, which can be thought of as to account

for dielectric saturation effects in a heuristic manner. However, non-Debye effects can

be relevant for the kinetics and motion of partial molecular charges which do not lead

to dielectric saturation at small length scales (i.e., high momenta). We note that in the

high-wave vector/high frequency regime classical MD simulations become unreliable
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as polarization and quantum effects start to be important, therefore in this regime our

results should be merely viewed as indicative.

Furthermore, in the last part of the chapter we proposed a heuristic and phenomeno-

logical approach, where a few approximations are needed, which in turn limit the appli-

cability of our results. We used the Leggett’s influence functional method to derive the

effective Euclidean action of the particle as a result of the interaction with a presum-

ably bath of harmonic oscillators. The formalism is based on linear-response theory.

Whether this is a good approximation or not, thus depends on the validity of linear-

response theory, and hence the strength of interaction. In the actual system of an excess

electron in water, we observed from calculating the dielectric friction, that the linear

response breaks down. This was justified using the discrepancy between the predic-

tions of the linear-response relaxation of the polarization field (Debye-relaxation), and

that of the molecular dynamics simulation data. However, this toy model gives us some

clues about the effects of local modes on the properties of polarons. We observed that

local modes are capable of localizing the polaron, at sufficiently large couplings. The

transition is jump-like; the jump closes if the width of the peak of the structure factor

or the characteristic frequency of damping are increase beyond a region shown in Fig.

(2.13).

From chapter 3 on, we switch to a rather systematic approach: a model field theory

which is also realizable in cold atomic experiments is proposed to be a good candidate

for capturing some physical aspects of the phenomenon of solvation.

Inspired by the above discussion, we shall seek models involving nonlinear effects,

which invalidate the perturbative expansion in coupling constant, and therefore linear

response theory breaks down. In the case of an electron in water, we heuristically and

phenomenologically interpreted the formation of hydration shell as a manifestation of

the break-down of linear response theory. Hydration shell, in our phenomenology, can

be thought of as a “frozen”, dense layer of solvent molecules. This local structure

corresponds to an ordered state, not achievable by expanding the free energy around
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the liquid phase minimum.

The model we adopt in the next chapter describes a quantum field in the vicinity

of a mean-field second order quantum phase transitions. We know, from the theory of

critical phenomena, that near a critical point the fluctuation occur at all length scales,

and consequently, the static structure factor Sq ∝ 〈|ρq|2〉 diverges. Here ρq is the Fourier

mode of the density fluctuations. Therefore by moving close to or away from a critical

point, one can tune the strength of the fluctuations. The model, near its transition,

shows instabilities towards an ordered state with the characteristic length q−1
0 . This

has dramatic consequences on both the nature of the transition in the bare system, and

the polaron properties in the impurity problem. We investigate the role of quantum

fluctuations of the medium on the solvation of the particle and the break-down of linear

response theory which is characterized by the formation of solvation shell. We also

address the experimental feasibility and discuss the possible realizations in an impurity-

doped ultracold Bose gas.
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CHAPTER 3

Ultracold Bose Gases and Mobile Impurities

Ultracold atomic quantum gases, specifically in the BEC state can be served as model

systems for investigating the role of quantum fluctuations. Bose gases in shallow har-

monic traps can simulate nearly ideal gases, when the interatomic scattering length aBB

is much smaller than the interatomic spacing, which is proportional to n−d, where n is

the density of the gas and d is the spatial dimensionality. For an ideal gas at tempera-

ture T , the mean momentum per particles is pT ∼
√
MBkBT , apart from a coefficient

of order unity. Here M is the mass of the bosons and kB is the Boltzmann’s con-

stant. From this, and the de Broglie’s relation one can calculate the thermal wavelength

λT ∼ h/pT ∼ h/
√
MBkBT , with h the Planck’s constant. Therefore the short wave-

length limit corresponds to, either h→ 0 or T →∞. This describes the classical limit

with no quantum interference. When T is decrease below a critical temperature Tc, the

thermal wavelength becomes of the order of n−d. In this limit (λT & n−d), and also for

lower temperatures, the quantum effects start playing significant roles.

Using Feshbach resonance techniques, one can change the scattering length, and

thus the interaction strength, over a few orders of magnitude. For dilute alkali-metal

atoms, the scattering length is of the order of a few nanometers. Feshbach resonance

technique, allows us to remarkably increase this length, roughly by a factor of 103.

When the interaction become important the ideal Bose gas theory fails and needs to be

modified. Below, we discuss the famous Gross-Pitaevskii theory.
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3.1 Nonlinear Gross-Pitaevskii Equation

The intraspecies interaction of a Bose gas is usually of the Lennard-Jones type. The

low-energy s-wave scattering of the bosons is described by a short-range isotropic po-

tential. For dilute enough gases, the potential can modeled by a local potential. In first

quantized form, a bosonic gas, with inter-particle interaction VBB(r−r′) = gBBδ(r−r′),

can be described the following Hamiltonian:

Ĥ =
N∑

i=1

(−~2

2MB
∇2
i + V (ri)

)
+
∑

i<j

4π~2aBB

MB
δ(ri − rj), (3.1)

where MB is the mass of the boson, and where we used gBB = 4π~2aBB/MB for the

contact pseudopotential. The many-body wave-function of the system in Hartree-Fock

approximation, is a product state of the single particle states.

Ψ(r1, r2, ..., rN) = ψ(r1)ψ(r2)...ψ(rN). (3.2)

The Gross-Pitaevskii equation is derived by applying the Hamiltonian to the many-body

wave-function.

H =
~2

2MB
|∇Ψ(r)|2 + V (r)|Ψ(r)|2 +

gBB

2
|Ψ(r)|4. (3.3)

Here V (r) is an external potential, and ∇2 ≡∑i∇2
i is the total laplacian operator. By

minimizing the energy functional with respect to the many-body wave-function, for a

conserved number of particles, we get the non-linear local Schrödinger equation.
(−~2

2MB
∇2 + V (r) + gBB|Ψ(r)|2

)
Ψ(r) = µΨ(r). (3.4)

The chemical potential µ is a Lagrange multiplier that can be found by applying the

conservation of the particle number constraint:

N =

∫
ddr|Ψ(r)|2. (3.5)

In the Gross-Pitaevskii approach the many-body wave-function Ψ(r) is reminiscent

of the order parameter notion in the Landau-Ginzburg theory of second order phase

transitions. The nonlinear Gross-Pitaevskii equation also allows for “soliton” solutions

which will be discussed in some details in the following chapters.
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3.2 Second Quantization Description and The Bogoliubov Theory

In the second quantized representation, and in the absence of the external potential, the

Hamiltonian takes the form:

ĤBoson =
∑

q

~2q2

2MB
a†qaq + gBB

∑

q,q′,k

a†q+ka
†
q′−kaq′aq, (3.6)

in which (aq, a
†
q) are the (annihilation,creation) operators of the bosons at momentum

q, and satisfy the canonical commutation relations:

[aq, a
†
q′ ] = δq,q′ . (3.7)

The ground-state of such a system forms a BEC. The fluctuations around the BEC

state are commonly described by Bogoliubov approximation. The latter originates from

the following: The vast majority of the bosons are assumed to form the BEC, and a

small number of bosonic excitations are out of condensate. Mathematically, this is

equivalent to say that the mode with q = 0, is macroscopically occupied, and hence

the BEC state |BEC〉, is insensitive to creation or annihilation of a single boson to the

condensate: a†q=0|BEC〉 ≈ aq=0|BEC〉 ≈ √n0|BEC〉. Here n0 = N0/Ω is the density

of the condensate where N0 is the number of bosons and Ω is the volume of the system.

This means that we can replace the creation and annihilation operators of this mode by
√
n0, where we have neglected 1 in comparison to

√
n0.

Within the above approximation and using a canonical transformation from (aq, a
†
q)

to a new set (bq, b
†
q) which are related to the former through:

bq = uqa
†
q + vqaq, (3.8a)

b†q = u∗qaq + v∗qa
†
q, (3.8b)

one can diagonalize the original Hamiltonian, such that:

Ĥ =
∑

q

~ωqb
†
qbq. (3.9)
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Here ωq is the dispersion of a Bogoliubov mode with wavevector q is equals:

ωq = cq
√

1 + (qξ)2/2, (3.10)

where c =
√
gBBn0/MB is the speed of sound in the condensate, and ξ =

√
1

2MBgBBn0

= 1√
2MBc

is the healing length of the condensate.

The “canonical” transformation preserves the commutation relations such that:

[bq, b
†
q′ ] = [aq, a

†
q′ ] = δq,q′ . (3.11)

This results in the following relation:

|vq|2 − |uq|2 = 1, (3.12)

so we can write them as:

v = eiθ1 cosh r (3.13a)

u = eiθ2 sinh r (3.13b)

3.3 Mobile Impurities in Bose-Einstein Condensates

Atomic gas mixtures with large concentration imbalance are used to study the impuri-

ties in many-body systems. While heavy impurities can be thought of as static defects

and treated classically, the finite-mass quantum impurities (“polarons”) can acquire ei-

ther extended or self-trapped states [70, 71]. The interaction of a quantum impurity

with dispersionless gapped longitudinal optical phonons results in a smooth transition

from extended (Fröhlich) to self-trapped (Landau-Pekar) polaron [67]. However, the in-

teraction with gapless acoustic phonons, in the presence of the momentum cutoff (edge

of the Brillouin zone), yields a smooth self-trapping transition up to a critical cutoff,

beyond which the effective mass of the polaron experiences a jump as the coupling

constant is enhanced [72]. A quantum impurity coupled to the gapless Bogoliubov ex-

citations (“Bose polaron”) can be described by a Fröhlich-like Hamiltonian. In atomic
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mixtures such as impurity-doped BECs, a momentum cutoff should be introduced to

the Bogoliubov excitations; turns out that although the results are almost independent

of the cutoff for realistic choices of the order of inverse interatomic interaction range,

they show a pronounced crossover at a critical coupling constant from quasifree to self-

trapped state; very similar to acoustic polaron [73].

3.3.1 Bose-polaron and Mapping to Fröhlich Hamiltonian

Low energy s-wave scattering of the impurity-boson atoms is described by a contact

pseudopotential of the form:

VIB(R− r) = gIBδ(R− r), (3.14)

where R and r denote the impurity and boson position vectors, respectively. The

Hamiltonian of quantum (mobile) impurities immersed in atomic BEC’s can be written

in the second quantized form as,

Ĥ =
∑

q

~2q2

2MI

c†qcq +
∑

k

εka
†
kak +

1

2

∑

k,k′,q

VBB(q)a†k′−qa
†
k+qakak′

+
∑

k,k′,q

VIB(q)c†k+qcka
†
k′−qak′ . (3.15)

In the above equation, MI is the mass of the impurity, and (c†q, cq) the (creation, annihi-

lation) operators of the impurity with dispersion εk = ~2k2/2MB−µ, in which µ is the

chemical potential of the condensate. The first and second terms represent the kinetic

contributions of the free impurity and the free Bose gas, respectively. However it is

more convenient to convert the impurity’s degree of freedom to first quantized form.

Therefore the contribution of the impurity to the Hamiltonian reads:

Ĥimpurity =
P̂ 2

2MI
+
∑

q,k

VIB(q)ρ̂I(q)a†k−qak, (3.16)

where P̂ is the momentum operator of the impurity, and ρ̂I(q) is the impurity density

operator.
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The third term in Eq. 3.15 is the boson-boson interaction which is elaborated in the

previous section. The last term which accounts for the impurity-boson interaction, is

the part we desire to recast an rewrite in the Fröhlich form. This mapping is possible

through the Bogoliubov shift. The resulting second quantized Hamiltonian in terms of

the Bogoliubov excitations reads,

Ĥ =
P̂ 2

2MI
+
∑

k 6=0

Ekb
†
kbk + EGP +N0VIB(0)

+
∑

k 6=0

√
ξkN0

Ek

VIB(k)ρ̂I(k)[b†−k + bk]. (3.17)

Here

Ek =
√
ξk(ξk + 2N0VBB(k)), (3.18)

is the dispersion of the Bogoliubov excitations, and ξk = ~2k2/2MB = εk + µ. Next

EGP is the Gross-Pitaevskii energy of the condensate:

EGP = N0ε0 +
N2

0

2
VBB(0) +

1

2

∑

k 6=0

N0VBB(k). (3.19)

The forth term in Eq. 3.17, N0VIB(0) is the interaction of the impurity with the ho-

mogeneous condensate in the background with total number of bosons N0. Therefore

the resulting Hamiltonian of the impurity-Bogoliubov interaction in the Fröhlich form

reads,

ĤFröhlich =
P̂ 2

2MI
+
∑

k 6=0

Ekb
†
kbk +

∑

k 6=0

Vke
ik.r[b†−k + bk] (3.20)

with

Vk =
√
n0 gIB

(
(ξk)2

(ξk)2 + 2

)1/4

. (3.21)

Now upon integrating out the Bogoliubov excitations in favor of the particle’s degree

of freedom, one can calculate the effective Euclidean action for the “Bose-polaron”:

S =

∫ β~

0

MI

2
|Ṙ|2dt−

∑

k 6=0

|Vk|2
2~

∫∫ β~

0

dtdsG(k, |t− s|) exp[ik.(R(t)−R(s))].

(3.22)

73



The propagator of the self-interaction term equals:

G(k, |t− s|) =
cosh(ωk(|t− s| − ~β/2))

sinh(~βωk/2)
, (3.23)

where ωk is introduced in Eq. 3.10. It is apparent from Eq. 3.22, that the path-integral

over the particle’s coordinate is not possible because of non-quadratic form of the ac-

tion. It is noteworthy that usually in the large coupling limit, the particle acquires a

self-trapped localized state, in which the quadratic approximation of the action in terms

of R is plausible.

3.3.2 Feynman’s Variational Method

In order to deal with the non-linearities in the problem, one can employ variational

methods to gain some intuition. Variational ansätze are usually designed to match per-

fectly in certain exactly (or perturbatively) solvable limits. A few free parameters are

included in each ansatz to play effectively the role of some combinations of actual pa-

rameters. In order to determine and fix the free parameters, we demand that the free

energy must be minimized with respect to all the free parameters.

Feynman’s variational method makes use of the convexity of an exponential func-

tion, namely exp(S/~). In this method one introduces a trial action S0, which is pre-

sumably path-integrable, hence Gaussian. Now using the following equation for parti-

tion function,

Z = e−βF =

∫
D[R(t)]eS[R(t)]/~, (3.24)

we get, after a few lines of algebra,

F ≤ F0 +
1

~β
〈S0 − S〉S0 . (3.25)

In the above equation F0 is the trial free energy associate with S0, which is obtained

by using Eq. 3.24. Also 〈•〉S0 denotes averaging • with weights exp(S0/~). The right

hand side of the above inequality contains adjustable parameters to “best” replicate the

original action. The “best” is achieved by minimizing the free energy with respect to
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these parameters. In the case of Feynman polaron, a simple yet powerful trial action is

of the harmonic form with a self-interaction propagator, which at zero temperature β →
∞ dies off like e−D|t−t′| in “imaginary-time”; D is one of the variational parameters. A

prefactor or coupling constant C is also included which mimics the polaron coupling

constant. At finite temperature the action reads:

S0 =−
∫ ~β

0

1

2

(
dR

dt

)2

dt− f .

∫ ~β

0

R(t)dt

− 1

2

∫∫ ~β

0

K(|t− t′|)|R(t)−R(t′)|2dtdt′, (3.26)

where

K(τ) =
1

~β

+∞∑

n=−∞

Kneiωnτ =
C

4D

cosh(D(τ − ~β/2))

sinh(~βD/2)
. (3.27)

We note that the wave-vector dependence of the kernel is completely ignored in the

variational action. The second term in Eq. 3.26 represents a constant force on the

particle. This term is included for later calculations of the effective mass.

After mapping, the Bose-polaron Hamiltonian is of the Fröhlich form, thus the same

variational action can be written as,

S0 =−
∫ ~β

0

1

2

(
dR

dt

)2

dt− f .

∫ ~β

0

R(t)dt

− MW 3

8

∫∫ ~β

0

cosh(W (|t− t′| − ~β/2))

sinh(~βW/2)
|R(t)−R(t′)|2dtdt′, (3.28)

where M ≡ C/D2 and W ≡ D are the variational parameters.

Using the above variational ansatz, Tempere, et.al, calculated the self-energy and

effective mass of the Bose-polaron. The results share common properties with those of

acoustic polaron. Note that Bogoliubov excitations look like acoustic phonos at large

wave-lengths. The polaron crossovers sharply from extended state at small couplings

to localized state at large couplings. The quantitative results are clearly dependent on

the momentum cutoff, like in the case of acoustic polaron (see Fig. (3.1)).

The problem of Bose-polaron has been a center of attraction to the condensed mat-

ter and ultracold atomic physicists. With the advent of experimental techniques, several
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Figure 3.1: (From Ref. [71]) The effective mass of the Bose-polaron M/mI , versus the

dimensionless coupling constant α. Different curves correspond to different tempera-

tures β−1. The inset shows the dependence on the momentum cutoff at β = 10.

studies have considered various aspects of this problem. Besides the Feynman’s varia-

tional method, other techniques such as second order perturbation theory, renormaliza-

tion group, and Monte Carlo simulations have been applied to the problem. However

the results seem to be considerably sensitive to the method for the intermediate coupling

regime.
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3.4 Bose-Einstein Condensates in Multimode Cavities

The first section of this chapter provides an overview of the calculations and results

presented in Ref. [74]. First, consider a system of N bosonic atoms with the internal

two-state structure. The atoms are both confined in an optical cavity and transversely

pumped by a laser (along z direction). An interatomic interaction of the strength U is

also included in the model. The geometry of the cavity is concentric, i.e. two spherical

caps of mirrors with nearly coincident centers. Assuming that the level-spacing of the

internal states of atoms is ~ωa, one can write down the Hamiltonian as:

Ĥ =
N∑

i=1

[
P̂2
i

2MB
+ ~ωaσzi

]
+ U

∑

1≤i<j≤N

δ(xi − xj)

+
∑

α

~ωca†αaα + i~
N∑

i=1

∑

α

[gα(xi)a
†
ασ
−
i − H.c.]

+ i~Ω
N∑

i=1

cos(kLzi)(σ
−
i − σ+

i ) +Hdiss . (3.29)

In the above expression, xi, P̂i, σi are the position, momentum and Pauli matrices of

atom i, respectively. The cavity-photon annihilation operators are represented by aα.

Also, gα(x) = g Ξα(x), in which g is the atom-cavity coupling. For modes α the

normalized mode functions are Ξα. This depends on the cavity geometry. In concentric

cavity α = (l,m, n), where l is the number of nodes in the direction of the laser; m

counts that in the angular direction and n in the radial direction. The Rabi frequency

Ω is proportional to the laser intensity, with the wave-vector kL. Finally the dissipation

is included in Hdiss, which includes terms the leaking of intracavity photons through

cavity with rate κ. In a rotating-wave approximation for the laser frequency ωL, red-

detuned from the cavity mode. Both frequencies are in turn significantly red-detuned

from the internal level-spacing: ωL � ωa − ωL � ωc − ωL > 0. We will use the

following detuning frequencies in the next steps:

∆a = ωa − ωc ' ωa − ωL, (3.30a)
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∆c = ωc − ωL. (3.30b)

First, the full action of the system can be written as:

S = Satom + Sphoton + Sint + Sdiss (3.31)

where

Satom =

∫
ddxdτ

[
ψ∗g(x, τ)

(
∂τ −

~∇2

2MB

− µ

~

)
ψg(x, τ)

+ ψ∗e(x, τ)

(
∂τ −

~∇2

2MB

+ ωA −
µ

~

)
ψe(x, τ)

+
U

2π~
|ψg(x, τ)|2(|ψg(x, τ)|2 + |ψe(x, τ)|2)

]
, (3.32a)

where ψg,e are the ground, excited coherent-states of the bosons, and µ is the chemical

potential. Also τ is the imaginary time. Because of the large internal gap ∆A of atoms,

|ψe|2 � |ψg|2, hence the term |ψe|4 is neglected. Next,

Sphoton =

∫
dτ
∑

α

a∗α(τ)(∂τ + ωc)aα(τ), (3.32b)

is the the action of the intra-cavity modes.

Sint =

∫
dτddx

[∑

α

igα(x)ψ∗e(x, τ)ψg(x, τ)aα(τ) + H.c.

+ iΩψ∗e(x, τ)ψg(x, τ) + H.c.
]
, (3.32c)

Sdiss =

∫
dτ
∑

ε

A∗ε(∂τ + ωε)Aε +
∑

α,ε

κα,εa
†
αAε + H.c., (3.32d)

Here Aε represent the extracavity modes. In order to obtain an effective field theory

for the condensate, one integrates out all the environmental degrees of freedom. The

resultant action reads (see Ref. [74, 75]):

Seff =
∑

n

∫
ddx ψ∗(ων ,x)

[
iων −

~∇2

2MB

− µ

~

]
ψ(ων ,x)

− ζ
∑

α

∫
dτddxddx′Ξα(x)|ψ(τ,x)|2Ξ∗α(x′)|ψ(τ,x′)|2

+
U

~

∫
dτddx|ψ(τ,x)|4 + ... . (3.33)
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Here we have used the following definitions: ωn are the Matsubara frequencies, and the

coupling constant

ζ =
g2Ω2∆c

∆2
a(∆

2
c + κ2)

. (3.34)

3.4.1 Order-parameter and Its Effective Action

One can define an order-parameter as the expectation value of the amplitude of the

density modulation in mode α.

〈ρα〉 =

∫
ddx 〈|ψ∗(x, τ)|2〉Ξα(x). (3.35)

The relation expresses the expectation value of the amplitude of the density field with

mode α, in terms the mode eigenfunctions Ξα. For example, in a concentric cavity

with modes α = (l,m, n), the atoms would like to crystallize into modes which satisfy

l + m + n = q0R/2π, where R is the radius of the cavity. In this case l = 0, that

is the node at z = 0, contributes the most and has the largest amplitude. For the

atomic clouds extended over many optical wavelengths, the orthonormal mode basis

approximately satisfy,
∫

ddxΠiΞmi,ni(x) = δ∑
imi,0

δ∑
i ni,0

, (3.36)

analogous to the momentum conservation condition. Here Πi denotes the product oper-

ation. After introducing some auxiliary fields and using identities, the effective action

of the order parameter can be derived as presented in Ref. [74]:

S =
∑

ν

∑

m,n

1

ζ

[
r′ + ω2

ν + χ(2π(m+ n)− q0R)2
]
|%ν,m,n|2

+
U

~

∫
dτddx|%(x, τ)|4 + ... . (3.37)

Here % represents the Bogoliubov excitations in the condensate. Other parameters are

given by:

r′ =

(
~q2

0

2MB

)2

− ζN~q2
0

2MB
, (3.38)
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and χ determines the width of the static structure factor of the model around q0. The

effective action obtained in Eq. (3.37) is reminiscent of the Brazovskii model for weak

crystallization. The difference is in the mode basis into which the crystallization is

favorable. The mean-field threshold of the laser field for the crystallization to happen

is given by:

Ω2
MF =

~2q2
0

2MB

∆2
a(∆

2
a + κ2)

N~∆cg2
. (3.39)

Figure 3.2: (From Ref. [74]) The picture is a schematic of a transversely pumped mul-

timode concentric cavity. The atomic cloud is trapped in the center antinodal sheet with

the least loss. The density field gets modulated when the laser reaches the Brazovskii

threshold.

As Eq. (3.37) suggests, above the mean-field threshold ΩMF, the density field un-

dergoes a spontaneous symmetry-breaking transition which belongs to the Brazovskii

class. Brazovksii renormalization calculation predicts that the transition point is shifted

by [74, 75]:

Ω2
TH − Ω2

MF '
(

g2∆c

∆2
a(∆

2
c + κ2)

Ω8
THMBR2

~Nχ

)1/3

. (3.40)
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It is clear as also mentioned in Ref. [74, 75], that the mode structure of the cavity is

not a crucial component and the choice is only for simplicity of calculations. In the next

section, we combine the Bose-polaron theory with the quantum Brazovskii field theory

presented in this section, in order to study the effects of nearly critical fluctuations on

the polaron physics. To this end, we ignore the specific mode basis of the concentric

cavity geometry, and work in the plane-wave basis where

Ξα(x) = exp(iq.x). (3.41)

This choice is in particular convenient for the study of mobile impurities and polarons,

and indeed generalizes the applicability of our treatment to actual crystallization in con-

densed matter systems. Therefore, we adopt a quantum Brazovskii model and include

the interaction with the particle’s degree of freedom which is also subject to quantum

fluctuations.

3.5 Impurity-doped Bose-Einstein Condensates in Cavities

It is well known that ultracold atomic physics provides realizations of interesting quan-

tum many-body systems [76, 77, 30]. In particular, and as discussed in the previous

section, the emergence of spatial order and other forms of spontaneous symmetry break-

ing in quantum systems can be studied in BECs confined to transversely laser-pumped

cavities [31, 32, 33, 74, 75]. We focus on the problem of an impurity in a correlated

quantum liquid near a continuous (or weakly first-order) symmetry breaking transition.

The role of quantum fluctuations on impurity solvation and transport in correlated liq-

uids like water [9] is currently the subject of active debates in the physical chemistry

literature. The failure of linear-response theory plays a central role in these debates

[17].

As introduced in the previous sections, the physics of impurities in ultracold quan-

tum gases [78, 79, 80] and in uniform BECs has already been well explored [81, 82,

83, 84, 85, 86]. The interaction between a (neutral) impurity and the Bogoliubov ex-
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citations of the BEC maps onto the so-called Fröhlich Hamiltonian [70, 87, 88, 71], a

linear-response theory that has been extensively applied to charged impurities in po-

larizable media (polarons). Such a “Bose-polaron” can undergo a transition from an

extended state to a self-trapped—or Landau-Pekar (LP) [89, 90]—polaron as a func-

tion of the coupling constant [73].

In a transversely pumped, multi-mode cavity, a BEC undergoes a spontaneous phase

transition from the uniform state to a state in which the the density of the condensate is

periodically modulated, with density ρ(r) = ρ0e
−iq.r+c.c. . This transition is described

by a quantum version of the Landau-Brazovskii theory for fluctuation-driven first-order

phase transitions (QLB)[74]. In this letter we will combine the Fröhlich Hamiltonian

description for impurities and the QLB theory for symmetry breaking in BECs to in-

vestigate the fate of a BEC polaron near the onset of spontaneous positional ordering.

The aim is to determine whether impurities in a BEC in a multi-mode laser-pumped

cavity can serve as a model system for the study of the effects of quantum fluctuations

on solvation and the breakdown of linear response theory without the molecular level

complexities that hamper studies of impurities in correlated liquids like water.

• Model:

Our model is defined by a Lagrangian that is the sum of three terms, respectively refer-

ring to the impurity particle, the condensate, and the lossy cavity. The Lagrangian of

an impurity particle in a BEC condensate is

LI =
1

2
MI|Ṙ|2 −

∫
d3r V (R(t)− r)ρ(r, t), (3.42)

with MI the impurity mass, R(t) the impurity location and ρ(r) the deviation of the

local density of the condensate from the mean density n0 = N0/Ω (N0 and Ω are the

number of bosons in the condensate and the volume of the system respectively). We

note that MI might be different from the bare mass of the impurity, and renormalized

due to interaction with the laser and/or cavity modes. This is similar to the mass of the
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Bloch electrons as a result of their interaction with a periodic potential. We only focus

on the interaction with the BEC.

Next, V (r) is the pseudopotential for the interaction of the impurity particle with

the bosons. In the s-wave Fermi approximation,

V (R− r) = gIBδ
(3)(R− r) (3.43a)

with

gIB = 2πaIB~2/Mr (3.43b)

where aIB is the impurity-boson s-wave scattering length and Mr the reduced mass of a

impurity-boson binary system:

M−1
r = M−1

I +M−1
B . (3.44)

In order to adopt the Feynman’s variational method, we first write down the classical

Lagrangian of the field. The Lagrangian for the excitations of the BEC reads

LB =
1

Ω

∑

q

~
ζq

(
|ρ̇q|2 − ω(q)2|ρq|2

)
+ LNL. (3.45)

Here we used the Fourier transform definition,

ρ(r, t) = Ω−1
∑

q

ρq(t)eiq.r (3.46)

and

ζq = n0ε0(q)/~. (3.47)

with

ε0(q) = ~2q2/2MB, (3.48)

the free boson dispersion relation. For a uniform BEC, the dispersion relation is given

by the Bogoliubov spectrum

~ω0(q) =
√
ε0(q)(ε0(q) + 2n0gBB), (3.49)
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where

gBB = 4πaBB~2/MB, (3.50)

is the pseudopotential for boson-boson scattering (aBB is the boson-boson scattering

length). Non-linear terms are represented by LNL. For BECs in an optical cavity, both

the boson-boson and boson-impurity scattering length are experimentally adjustable

parameters. The Fröhlich Hamiltonian of BEC polarons in uniform condensates is

recovered upon canonical quantization of the linear and quadratic terms of equations

(3.42) and (3.45).

The modes of a BEC inside a laser-pumped optical cavity, are mixed Bogoliubov

excitations and electromagnetic modes [31, 32, 74, 75]. The mode frequencies are

depressed and driven to zero around q0, as the amplitude increases. Near the instability

threshold, the spectrum can be approximated as [74, 75]:

ω(q)2 ' ∆ + λR2(|q| − q0)2, (3.51)

where ∆ is frequency squared of the lowest frequency mode, R the dimension of the

cavity, and λ a phenomenological parameter determining the range of wave-vectors

over which the depression takes place. It is itself determined by the width of the cavity

resonance and other factors [74, 75]. In MF theory, this Lagrangian describes a contin-

uous ordering transition at ∆ = 0 from a uniform phase to a density-modulated phase

with modulation vector q0 and modulation amplitude proportional to |∆|1/2 [91, 92, 93].

In chapter 2, we introduced the Caldeira-Leggett formalism, where a classical de-

gree of freedom can be quantized using path-integral formulation. The effective action

of such a system is then obtained by the influence function of the bath. This formalism

is in particular useful and can be conveniently incorporated in the field theory lan-

guage. The modes of the BEC are also coupled to the electromagnetic modes outside

the pumped cavity that act as a reservoir. These are included in the form of a distri-

bution of harmonic oscillators coupled linearly to the BEC modes. Their Lagrangian
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Figure 3.3: The dispersion of the Brazovskii modes ω2
q = Γ + χ(q − q0)2. Different

colors correspond to different distances from the QLB mean-field transition from Γ = 1

to Γ = 20 at constant field rigidity, χ = 100. The dimensionless parameters are

introduced in the text (see below).

is

LE =
∑

j

1

2
mj{ẋj2 − ω2

jx
2
j} −

∑

j,q

Cj,qρqxj. (3.52)

The nature of the dissipation is determined by the choice of the oscillator spectral den-

sity [63, 64].

Jq(ω) =
π

2

∑

j

(
Cj,q

2

mjωj

)
δ(ω − ωj) (3.53)

We will restrict ourselves to the simplest case of “Ohmic” dissipation with Jq(ω) =

ηq ω, for low frequencies where ηq is an effective friction coefficient. For higher fre-

quencies, a UV cutoff should be introduced. The classical equation of motion for the
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System Borders

(Cavity)

Environment’s Degrees of Freedom

Figure 3.4: The dissipative environment, in general can be represented by a bath of

harmonic oscillator whose displacement is linearly coupled to the system’s degrees of

freedom. The blue cloud indicates the atomic gas. The dotted edges are the imaginary

boundaries of the system.

impurity, obtained by minimizing the total action, is of the Langevin form with a fric-

tion coefficient that diverges at the MF critical point as ηq0/∆
2.

The equilibrium partition function Z of the impurity is proportional to the func-

tional integral ∫
exp(ST)D{R(t)}D{ρq(t)}D{xj(t)}, (3.54)

over all degrees of freedom R(t), ρq(t), xj(t), which must obey periodic boundary con-

ditions in “imaginary time” 0 ≤ s ≤ β (β = 1/kBT ). This condition is a consequence

of tracing over bosonic degrees of freedom. We have,

R(0) = R(β), ρq(0) = ρq(β), x{j}(0) = x{j}(β). (3.55)

Here, ST is the Euclidean action. The path integral over the environmental oscillators
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can be carried out analytically because of their Gaussian form. This, in the case of

Ohmic bath, adds a new overdamping term to the bare action of the density field of the

form: γ|ωn||ρq,n|2 (see below).

The remaining path integrals over condensate modes and particle trajectories will

be discussed separately for positive and negative ∆.

3.6 Above the Mean-field Critical Point

For positive ∆, the non-linear terms (LNL) do not play a significant role. The density

fluctuations can then be integrated out, leading to an effective action for the particle

trajectories:

S ' −
∫ β̃

0

1

2

(
dR̃

ds̃

)2

ds̃− f̃ .

∫ β̃

0

R̃(s̃)ds̃

+ α

∫
d3q̃

∫∫ β̃

0

ds̃ds̃′G(2)
q̃ (|s̃− s̃′|)eiq̃.[R̃(s̃)−R̃(s̃′)], (3.56)

where

α =
g2

IBq
3
0ζ~

4(2π)3

(
MI

~2q2
0

)3

, (3.57)

plays the role of a dimensionless coupling constant. The kernel, for q around q0, is

given by

G(2)
q (τ) =

1

β

+∞∑

n=−∞

eiωnτ

χ(q − 1)2 + Γ + γ|ωn|+ ω2
n

. (3.58)

The summation is over dimensionless bosonic Matsubara frequencies

ωn = 2πn/β, (3.59)

so the periodic boundary conditions in imaginary time are obeyed. The dimensionless

distance to the MF critical point of the QLB is defined here as

Γ = ∆(MI/~q2
0)2, (3.60a)
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the dimensionless friction coefficient as

γ = η(MI/~q2
0) (3.60b)

and the dimensionless field rigidity as

χ = λ(MI/~q2
0)2(Rq0)2. (3.60c)

We shifted here to dimensionless quantities (indicated by tildes), by setting

MI = ~ = q0 = 1. (3.61)

The energy is then measured in units of ~2q2
0/MI; length is measured in units of q−1

0 , and

time in units of MI/(~q2
0). The dimensionless inverse temperature β̃ = (~q0)2/MIkBT

is the ratio of the zero-point energy of the particle confined in a well with a dimension

of order 1/q0 and the thermal energy. We drop the tildes for convenience hereafter, but

will return to actual units when needed, to make the interpretations more straightfor-

ward. Also, in order to later compute the effective mass, an infinitesimal external force

f̃ , is included in the action (see below).

• Variational Action:

As mentioned in the previous sections, the perturbation theory fails in the regime of

most interesting cases of solid state. The coupling constant is usually of the order

∼ 1 − 10. In ultracold quantum gas experiments, this coupling can be easily varied

via Feshbach resonance. In order to cover the entire interesting possible values of cou-

pling constant, a very successful method to adopt is the Feynman’s variational method,

specifically devised for the path-integral formulation. Therefore, the path integral over

the particle trajectories is performed variationally [65, 66, 67, 68] by a defining suitable

Gaussian trial action. For the present case we choose

St =−
∫ β

0

1

2

(
dR

ds

)2

ds− f .

∫ β

0

R(s)ds

− 1

2

∫∫ β

0

K(|s− s′|)|R(s)−R(s′)|2dsds′, (3.62)
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where the kernel

K(τ) =
1

β

+∞∑

n=−∞

Kneiωnτ , (3.63)

with

Kn = C/(D + γ|ωn|+ ω2
n), (3.64)

is similar to the actual kernel. The constants C and D play the role of variational

parameters.

• Free Energy:

The variational parameters C,D have to be adjusted to minimize the free energy. In

particular, close enough to the phase transition, the integral is dominated by the q0

mode. Therefore we expect the minimizing D to be of the same order as Γ. The free

energy satisfies Feynman’s inequality:

F ≤ Ft + β−1〈S − St〉t. (3.65)

Here F = −kBT lnZ is the free energy of the particle. Expectation values are com-

puted using the Gaussian trial action. The right hand side of the inequality is a function

of the variational parameters. By minimizing this expression with respect to C,D, we

find an upper bound to the actual free energy.

• Effective Mass:

For a free particle with mass M∗ subject to a force f , the second derivative of the free

energy with respect to the applied force equals (in actual units).

∂2F/∂f 2|f=0 = ~2β2/12M∗. (3.66)

Using this as the definition of the effective mass [69] and applying the trial action gives

(in dimensionless units):

M∗ =
β2

24

[∑

n>0

gn

]−1

, (3.67)
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where

gn =

[
ω2
n +

2

β
(K0 −Kn)

]−1

. (3.68)

The minimizing C,D should be substituted in Eq. (3.68) to obtain gn. This in turn is

substituted in Eq. (3.67), to calculate the effective mass.

3.6.1 Zero Dissipation and Close to the Mean-field Critical Point

In the limit of γ = 0, and close to the mean-field critical point of the QLB transition,

the effective action takes the following form:

S ' −
∫ β̃

0

1

2

(
dR̃

ds̃

)2

ds̃− f̃ .

∫ β̃

0

R̃(s̃)ds̃

+ α

∫
d3q̃

∫∫ β̃

0

ds̃ds̃′
1

ωq

cosh(ωq(|s̃− s̃′| − β/2))

sinh(ωqβ/2)
eiq̃.[R̃(s̃)−R̃(s̃′)], (3.69)

where we have:

ωq = [χ(q − 1)2 + Γ]1/2. (3.70)

Close enough to the QLB transition, the integral in momentum space is dominated by

the shell q = 1. Therefore one can crudely assume that the kernel G(2)
q=1(τ) decays as

G
(2)
q=1(τ) ∼ exp(−

√
Γτ). (3.71)

This looks like a Feynman polaron [65, 66, 67, 68] with the effective mass increasing

smoothly as a function of α.

3.6.2 Large Dissipation Limit: Classical Field

When quantum fluctuations of the field are suppressed by taking the limit γ →∞, the

only Matsubara frequency contributing to the summation in temporal kernel is the n =

0 term. We shall mention here that in our formulation, following the usual convention,

we have absorbed 1/ζq0 ≡ 1/ζ , the coefficient of ω2
n (let us call it the mode effective

mass) in the definition of the coupling constant and set it equal to unity. Therefore we
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need to take γ →∞ to reach the classical field limit. However, if we leave the effective

mass of the mode as a free parameter, then 1/ζ → ∞ limit, also serves as a classical

field. From the experimental point of view, the latter is constrained by the zero-point

motion of the Bose atoms, namely they should be of the same order of magnitude for

the spatial order to emerge. On the other hand, a lossy environment could be more

easily provided.

This limit corresponds to the Born-Oppenheimer approximation where a quantum

particle interacts with a quasi-static configuration of the surrounding medium. In this

limit, the kernel is independent of time and reduces to

Gq = [β(χ(q − 1)2 + Γ)]−1. (3.72)

The effective action for the particle then reads:

S = −
∫ β

0

ds
1

2

∣∣∣∣
dR

ds

∣∣∣∣
2

+ α

∫
d3q Gq

∫ β

0

∫ β

0

dsds′ exp[iq.(R(s)−R(s′))]. (3.73)

We need a criterion for the appearance of a self-trapped state. Assume that the trajec-

tories R(s) that dominate the path integration in the partition function

Z =

∫
D[R(s)] exp(S), (3.74)

are confined isotropically in a spherical region around the origin and then, a-posteriori,

verify the assumption. At low temperatures, the factor

fq ≡ β−1

∫ β

0

ds′ exp[iq.R(s′)], (3.75)

samples a long trajectory and thus depend only on the magnitude q of the wavevector.

The action can be written as:

S = −
∫ β

0

ds
1

2

∣∣∣∣
dR

ds

∣∣∣∣
2

+ αβ

∫
d3q Gqfq

∫ β

0

ds exp[−iq.R(s)]. (3.76)

A self-consistency condition for fq is then

d
dα
F (α) = −β

∫
d3q Gq|fq|2, (3.77)
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with F = −1/β lnZ . After integrating over the angular directions of the wavevector,

the action reduces to

S = −
∫ β

0

ds
1

2

∣∣∣∣
dR

ds

∣∣∣∣
2

−
∫ β

0

ds U(R(s)). (3.78)

where

U(R) = 4παβ

∫ ∞

0

dq q Gqfq
sin(qR)

R
. (3.79)

This expression resembles the action of a particle in the radial potential U(R). If this

radial potential has one or more bound states, then the lowest bound state is isotropic

and the path integral, indeed would be dominated at low temperatures by isotropic

trajectories, as assumed. In order to determine whether there are bound states, we note

that the integration over q is dominated (in dimensionless space) by q = 1 since Gq is

peaked at q = 1 close to the transition. It follows that

U(R) ≈ 2
√

2π2αf1√
χΓ

sinR

R
. (3.80)

For negative f1 this represents a potential well near the origin (the case of interest), and

for positive f1 a repulsive potential. For small R, one can expand U(R) to the sec-

ond order in R, which leads for negative f1 to a three dimensional harmonic oscillator

potential:

U(R) ≈ 2
√

2π2αf1√
χΓ

(1−R2/3! + ...). (3.81)

The ground-state energy level of the harmonic oscillator lies a distance ∆ε = 3
2
~ω0

above U(0), where ω0 =
√

4πα|f1|
3
√
χΓ

. An approximate condition for the existence of at

least one bound state is obtained by demanding that the lowest energy level E(α) =

U(0) + ∆ε of the harmonic oscillator is negative. Here

E(α) = −2
√

2π2α|f1|√
χΓ

+
3

2

√
2
√

2π2α|f1|
3
√
χΓ

, (3.82)

and consequently,

αc >
3
√

2

16π2

√
χΓ

|f1|
. (3.83)
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In the low temperature limit, with F (α) ' E(α), the self-consistency condition for f1

reduces to

−2
√

2π2|f1|+
3

4

√
2
√

2π2
√
χΓ|f1|

3α
= −2

√
2π2|f1|2. (3.84)

Recalling that the minimum α value for a bound-state is α = 3
√

2
16π2

√
χΓ
|f1| and inserting this

into the self-consistency condition gives,
√

2|f1| = 2
√

2|f1|2, with solutions f1 = 0 and

f1 = −1/2. Taking the second solution to be the bound-state gives the final result

αc >
3
√

2

8π2

√
χΓ , (3.85)

Therefore we see that, in the opposite limit of γ →∞, where the quantum fluctua-

tions of the field are suppressed and only the n = 0 term remains (corresponding to MF

classical static structure factor ∼ 1/[χ(q − 1)2 + Γ], the model reduces to the Landau-

Pekar theory of the small polaron. The effective mass indeed undergoes a discontinuous

jump as a function of increasing coupling constant at a critical value αc ∼
√
χΓ. From

Fig.3.6(a), as the damping coefficient is reduced, the effective mass discontinuity is

reduced and goes to zero at a critical point.

According to Fig.3.5, the critical value of the critical coupling constant for the tran-

sition between the large and small polarons is strongly reduced as one approaches the

ordering transition of the BEC. This is an important result: the transition from large to

small polaron can be induced much easier in a BEC near the ordering transition.

3.6.3 Phase Diagrams

In this part, we calculate the effective mass and self-energy of the polaron in the general

case of finite dissipation and temperature. The discontinuity of the effective mass oc-

curs at a line of first order transitions which terminates as either the thermal fluctuations

or the quantum fluctuations of the field is enhanced; see Figs. (3.6,3.7).
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Figure 3.5: Effective mass versus dimensionless distance from the ordering transition

Γ. Other parameters are set to: β = χ = γ = 100.
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Figure 3.6: Effective mass versus dimensionless coupling constant and (a) dissipation,

(b) temperature. Other parameters are set to: (a) β = χ = 100 and Γ = 1, (b)

γ = χ = 100 and Γ = 1. In (a) and (b) the red dots indicate the critical points

where the discontinuity of the effective mass closes. The dark arrows marked by αth

corresponds to the value of the dotted line in Fig. 3.5, i.e. γ, β →∞, at Γ = 1.
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Figure 3.7: Free energy versus dimensionless coupling constant and (a) dissipation, (b)

temperature. Other parameters are the same as those in Fig. 3.6. The red dots, again

indicate the critical point, where the effective mass jump closes.

96



3.7 Conclusions

In this section, we first introduced the theory of trapped ultracold Bose gases and the

effect of mobile impurities in them. We discussed how the Bogoliubov transformation

can be applied to map the problem onto a Fröhlich Hamiltonian, the standard frame-

work of the field-polaron model. Using this approach we presented the physics of

Bose-polaron. As the Bogoliubov excitations look like acoustic phonons in the long

wavelength limit, the behavior of the effective mass of the polaron, seems to be similar

that of the acoustic polaron. The latter shows dramatic momentum cutoff dependence.

As the cutoff is increased beyond certain values, the transition between extended (small

coupling) to self-trapped (large coupling) shows a kink-like point, where the derivative

of the effective mass becomes discontinuous.

Next, we introduced the theory of ultracold Bose gases in cavities, with a focus on

multimode cavities. We discussed the main steps of the derivation of the effective ac-

tion for the density field, and observed that the order parameter follows the scenario of

a quantum Landau-Brazovskii first order transition. We then introduce a dilute impurity

gas to the system. We studied the Bose-polaron physics away from the ordering tran-

sition, as a function of other parameters such as the dissipation of the order-parameter

field and the effective temperature. We find that at zero temperature and infinite damp-

ing, (i.e. when quantum fluctuations of the bath are suppressed), the particle undergoes

a first order transition. Adding either one of these sources of fluctuations, smears the

jump in the effective mass. The gap finally closes at separate second-order critical point

(similar to that of the liquid-gas transition). We note that although a similar behavior

has been observed in acoustic polarons, in the latter the cause of jump-like self-trapping

transition is the short wavelength fluctuations as the jump appears beyond a certain

sharp cutoff, namely the edge of the Brillouin zone. In our model, the effective mass is

insensitive to the cutoff and is instead dictated by a local mode q0, which is not depen-

dent on the microscopic details of the Bose gas. In fact as suggested q−1
0 , turns out to
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be of the order of many interatomic distances. We also plot the phase diagram of effec-

tive mass versus coupling constant and the distance from the transition point. However

we keep the distance large enough such that the nonlinear effects are not crucially im-

portant and can be neglected. We observe that as we move close to the transition, the

transition to the self-trapped state is facilitated by the large fluctuations of the order

parameter, and thus happens at a smaller coupling constant. We compared this with an

analytical result obtained from self-consistent approximation at infinite damping and

zero temperature.

In the next chapter, we devise a method for studying the impurities very close to

the Brazovskii spatial ordering transitions, where the nonlinearities become important,

so the perturbative solutions fail, and indeed a new type of interesting solutions appear:

the solitons. We show how the new soliton state appears upon increasing the impurity-

boson interactions; hence called the impurity-induced solitons.
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CHAPTER 4

Solitons in Bose-Einstein Condensates

Bose-Einstein condensates are the matter analogues of light, where a condensate of

photons give rise to coherent propagation of the electromagnetic waves. Bose-Einstein

condensates are commonly described by the so-called nonlinear Gross-Pitaevski equa-

tion, which accounts for the self-interaction of the condensate. Gross-Pitaevskii equa-

tion is a mean-field model, very similar to the nonlinear Schrödinger equation. The

latter is a key component in the field of nonlinear optics. Therefore BEC systems

are promising candidates to be probed and gain insight into various systems from.

The successful description of BECs by a mean-field model is due to the long-range

(macroscopic) coherence of the wave-function. In the previous chapter, we studied the

low-lying excitations in a condensate, by means of Bogoliubov transformation and ap-

proximation. Bogoliubov theory is a perturbation around the Gross-Pitaevskii equation

which gives us the effective action of the fluctuations around the vacuum state. There

are other types of solutions which are not predicted in this approach. These are the

nonlinear solutions, e.g. solitons. Solitons in general refer to stable localized waves

(envelopes) which propagate in a shape-preserved manner.

As mentioned above, a natural consequence of the nonlinear Gross-Pitaevski equa-

tion is the appearance of non-dispersive solutions, “solitons”, which are stabilized

agains dispersion, by a quartic nonlinear term. Indeed, the BEC solitons arise “spon-

taneously” as the system crosses the condensation transition, a second order symmetry

breaking transition. If the interatomic interaction of the bosons is repulsive (gBB > 0

and thus aBB > 0), only dark solitons are allowed. In nonlinear optics the “dark” soli-
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tons are the nonlinear solutions indicating the local “low-intensity” regions. The same

term is thus being used for matter fields such the wave-function of a Bose-Einstein

condensate. Alternatively, attractive interaction allows for “bright” solitons, where the

amplitude of the soliton is above the homogeneous background density of the conden-

sate. The solitonic solutions of nonlinear Gross-Pitaevskii occur concurrently in the

amplitude and the phase of the Bose-Einstein condensate. The phase jump at the po-

sition of the density minimum, gives the dark solitons a topological nature (discussed

below; also see Fig. (4.1)). One of the experimental methods for manipulating the

wave-function is the quantum phase engineering. For instance, solitons in BECs can be

generated by optical phase imprinting [94].

4.1 Solitonic Solutions of the Gross-Pitaevskii Equation

In this section we briefly overview the soliton solutions of the Gross-Pitaevskii equa-

tion. We start with the one-dimensional version of this equation in the absence of

external potential of the trap.
(
i~
∂

∂t
+

~2

2MB

∂2

∂x2
− gBB|Ψ(x, t)|2 + µ

)
Ψ(x, t) = 0. (4.1)

where n0 is the density of the condensate, gBB = 4π~2aBB/MB is the self-interaction

of the BEC, and µ = gBBn0 is the chemical potential. The characteristic length scale

dictated by the differential operator is `0 = ~/
√
MBn0g. Therefore, Eq. (4.1) is a

valid description of the macroscopic wave-function, as long as `0 is much larger than

the mean inter-particle distances, i.e. `0 � 1/(n0σ), where σ is the transverse cross

section of the BEC.

4.1.1 Dark Solitons

Solitons can be considered as particle-like excitations. One can assign a degree of

freedom, like a position and a conjugate velocity. For positive boson-boson scattering
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length aBB > 0, and thus g > 0, there exists a dark soliton solution with the y−z nodal

plane moving with velocity v in the x direction. This is expressed as:

Ψ(x, t) =
√
n0e

−iµt/~
[
iv

cS
+
√

1− v2/c2
S tanh

(√
1− v2/c2

S (x− x0)/`0

)]
. (4.2)

in which x0 is the location of the nodal plane on the x-axis (coordinate of the soliton as

a particle), and cS is the speed of sound:

cS =

√
gn0

MB
(4.3)

It is assumed that the velocity of the soliton v is smaller than the speed of sound:

v < cS . The energy of this state is:

H =
1

3
M c2

S (1− v2/c2
S)3/2, (4.4)

where M = 4n0σ`0MB, is the inertial coefficient of the soliton. If the velocity of the

nodal plane is much smaller than the speed of sound: v � cS , we get:

H =
1

3
M c2

S −
1

2
M v2. (4.5)

4.1.2 Bright Solitons

For negative scattering length (aBB < 0), corresponding to attractive interaction (g <

0), the soliton solutions is called a “bright” soliton. In principle, the attractive interac-

tion allows for collapse of the wave-function. The Gross-Pitaevskii equation, or equiv-

alently the nonlinear Schrödinger equation, admits singular or spreading solutions, in

the presence of a focusing nonlinearity (i.e. negative scattering length). In two di-

mensions, collapse occurs when the total number of atoms exceeds a critical value. In

three dimensions, however, the collapse may happen for any number of atoms. For a

quasi-one-dimensional gas which is trapped in the radial direction with frequency ωr,

we define the radius of the trap

ar =

√
~

MBωr
. (4.6)
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Figure 4.1: Top panel shows the density |ψ(x)|2 of the BEC. The dip indicates the

dark soliton. The bottom one depicts the phase of the wave-function ϕ(x). The figure

corresponds to the phase jump ∆ϕ = π, where the density of the BEC locally reduces

to zero, i.e. dark soliton.

The bright soliton is then expressed by the following expression:

Ψ(x, t) =
ar√

2|aBB|κ
sech

(
x− vt
κ

)
exp

[
i

~
MBv x−

i

~

(
MBv

2

2
− ~2κ2

2MB

)
t

]
.

(4.7)

Here κ = a2
r/(|aBB|N) is the width of the soliton envelope.
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4.2 Impurity-induced Solitons of BECs in Multimode Cavities

As discussed in the previous chapter, above the mean-field Brazovskii transition, in the

large damping limit and/or at small temperatures, the impurity acquires either extended

or self-trapped states for small and large couplings, respectively. We observed that

adding the quantum fluctuations of the field, for example by decreasing the dissipation

and allowing more Matsubara frequencies to contribute, finally closes the discontinuity

of the effect mass at a critical point. On the other hand, increasing the thermal noise

amounts qualitatively to the same effect, i.e. closes the jump of the effective mass at a

distinct critical point.

We can get the system progressively closer to the mean-field transition point by

cranking up the laser intensity closer to the mean-field threshold. For systems in spa-

tial dimensions D ≥ 2, the phase-space volume of the fluctuations corresponding to

the modes around q = q0, and consequently the entropic cost of these fluctuations,

eventually become so large that the system avoids the second order critical point, and

instead pays the latent heat expense, by jumping discontinuously to a non-zero mini-

mum, which emerges during the renormalization procedure.

According to the renormalization flow of the parameters as a function of the dimen-

sionless mean-field distance to the critical point Γ, the renormalized quartic coefficient

ū flips sign at around Γ ' −3.5. At this value of Γ, the renormalized distance to the

critical point is Γ̄ ' 1. Therefore we see that for negative values of Γ, the nonlinear

effects have to be taken into account. Practically this can be done by replacing the bare

parameters with the renormalized ones, in the full bare action.

• Below the Mean-field Critical Point of Quantum Brazovskii Model, ∆ . 0:

We start with the full Lagrangian again:

LB =
1

Ω

∑

q

~
ζq

(
|ρ̇q|2 − ω(q)2|ρq|2

)
+ LNL. (4.8)
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For negative ∆, the non-linear terms of Eq. (4.8) must be taken into account. It can be

shown that only even terms need to be included [74, 75]:

LNL = −u
∫

d3r |ρ(r)|4 − w
∫

d3r |ρ(r)|6 . (4.9)

In order to perform the functional integrals for this non-linear case, first expand the

free energy F [R(s)] in a Taylor expansion in powers of the impurity pseudopotential

gIB. Then perform, term by term, the functional integrals using the non-linear action.

The zero-order term in the expansion is the partition function of the condensate in the

absence of the particle. The first order term is

F (2)[R(s)] =
−g2

IB

2!

∑

q,n

G(2)
q (ωn)

∫∫ β

0

dsds′eiq.[R(s)−R(s′)]. (4.10)

Here, G(2)
q (ωn) is the full two-point Green’s function of the non-linear bare system. The

second order term contains the full four-point vertex function of the pure system. These

full correlation functions are obtained by a second expansion, now in powers of LNL.

The non-linear terms can be included by the renormalization group method [74, 75].

To one-loop order, this leads to a renormalization of ∆ to ∆̄ with

∆̄ ' ∆ + Pu ln(∆c/∆̄), (4.11)

where P ∝ q0
2 and ∆c a high-energy cutoff. The effective gap ∆̄ of the spectrum

remains positive for negative values of ∆. The renormalized quartic coefficient ū is

given by

ū ' u
1− uΠ

1 + uΠ
, (4.12)

with Π = P/∆̄; so ū becomes negative if the effective gap ∆̄ drops below Pu (which

happens for slightly negative ∆). The functional integral over the renormalized quadratic

Lagrangian no longer suffers from strong fluctuations, even for negative ū. For negative

ū and decreasing ∆, a first-order phase transition takes place at

ū2 = 4~∆̄w/ζ. (4.13)
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At the transition, the modulation amplitude changes discontinuously from the symmet-

ric phase ρ = 0 to the symmetry-broken phase at

ρ =
√

2(~∆̄/ζ|ū|)1/2 . (4.14)

Although the mean-field correlation length diverges at the second-order critical point,

renormalization suggests that the correlation length remains finite at the first-order QLB

transition. The correlation length at the ordering transition is

ξ = R
√
λ/∆̄ . (4.15)

This renormalized action SR
T has the same form as the bare action ST but with u and ∆

replaced by the renormalized ones: it can be analyzed by MF theory plus fluctuation

corrections.

4.3 Static Impurities (Local Defects)

In this section we study the effect of the static impurities with a local potential, on a

Brazovskii field, very close to its first order phase transition. In one dimension an exact

solution is presented. In higher dimensions, in particular in three dimensions, we resort

to a variational ansatz for the radial modulation profile of the field. The ansatz is of the

form which can be obtained from linear-response theory.

4.3.1 Exact Solution in One Dimension

The mean-field Brazovskii free energy is minimized by a density modulation with the

preferred wave-vector q0:

ρ(x) = A exp(iq0x) + c.c. . (4.16)

By substituting the ansatz into the Brazovskii action, and keeping terms up to q2, i.e.

up to second order derivative ∇2, we obtain an effective action for the modulation

amplitude.
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When the static impurity is added to the system, the modulation amplitude at the

location of the impurity, serves as a free parameter which should determined by mini-

mizing the total energy cost of the impurity interaction and that of the deformation of

the field.

The energy cost of a soliton certainly depends on the value of the field at the bound-

aries. At the transition, the two vacua of the system corresponding to disordered and

ordered phases are degenerate. Trivial homogenous solutions arise from the uniform

boundary conditions, that is constant at the boundary (type I). The trivial solution is

that the value of the order parameter remains constant across the system. Other types

of boundary conditions can be imposed; for instance, in one dimension, one might de-

mand that the boundary values are different at the two ends x→ ±∞ (type II). Then the

saddle-point solution, namely the lowest energy field configuration is called a “kink”.

The kink solutions starts from the value at one end, remain mainly close to this value

until a point far from the ends where the field amplitude is changed to the value at the

other end. This decay occurs over the correlation length, which is finite at the first order

transition, and small compared to the system size. It is worth mentioning that under the

former boundary condition, and on top of the trivial uniform solution, there exist solu-

tions consisting of even number of kinks. Configurations with odd number of kinks can

be considered as excitations corresponding to the second type of boundary conditions.

We, in this section, are facing a new set of constraints: (i) the usual type I boundary

conditions, plus (ii) a non-zero value at the origin, which should be found by mini-

mizing the free energy. We name such soliton solutions, “droplets”. A droplet is a

local modulation of the ordered phase, embedded in the bulk disordered phase. At the

transition and assuming that the field is cooled down from the high temperature phase,

the nucleation of a droplet is in fact causes the coexistence of the phases which are

separated apart by a domain-wall (kink) of the size of the correlation length.
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F [A(x)] =

∫ +∞

−∞
dx

{
λR2

(
dA(x)

dx

)2

+ V(A(x))

}
. (4.17)

According to our constraints, that is a non-zero value of A at the origin, we know that

the everything is symmetric under parity transformation: x→ −x. We assume that the

value of the field at the origin is some value A∗. Above the transition, any modulation

on top the uniform field is costly. If the field is pinned at a non-zero value at the origin, it

will have to fall down to the Gaussian minimum corresponding to the disordered phase.

Right at the transition, the minima are degenerate. Upon imposing the aforementioned

boundary conditions, the field is again forced to decay to zero (see Fig. (4.2)). We

will calculate this deformation cost in the following. This situation is however costly,

and its energy has to be provided in the actual system by the impurity potential. The

value of the field at the origin is then determined by the counterbalancing forces which

couple to the field.

In the above equation (4.17), the effective potential for the modulation amplitude is

equal to:

V(A(x)) = −V0δ(x)A+
~∆̄

ζ
A2 + ūA4 + wA6. (4.18)

We note that ū < 0. The Euler-Lagrange equation derived from minimizing the free

energy in Eq. (4.17) reads:

d2A(x)

dx2
=

1

2λR2

dV(A)

dA
. (4.19)

For x 6= 0, the equation is that of the bare (i.e. without the impurity, but renormalized)

field. We now need to calculate the total free energy of the system under the condition

that the field is, after minimization, pinned at A(x = 0) = A∗, and decays to A(x →
∞) = 0, following the Euler-Lagrange equation. The total free energy can be written

in two terms:

F(A∗) = −V0A
∗ + Fdrop(A

∗) . (4.20)

The two terms on the r.h.s arise respectively from the impurity and self-interaction of

the field. As mentioned above, the system is invariant under parity. Therefore we know
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Figure 4.2: Dimensionless effective potential energy V(A), of the modulation coordi-

nateA. At the transition, the potential clearly has a minimum atA =
√

2. The red curve

with arrows, represents a saddle-point solution of the Euler-Lagrange equation, under

the boundary condition that the field modulation at x→ −∞ is pinned at A =
√

2, and

goes to A = 0 at x→ +∞.
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that any such solution consists of two kink-like solutions, which are connected to one

another at the origin. We call this a droplet. Thus,

Fdrop = 2Fkink. (4.21)

Consequently it suffices to calculate the kink energy as a function of its value at the

origin. The kink energy is:

Fkink = 2λR2

∫ +∞

0

dx

{
1

2

(
dA
dx

)2

+ V(A)

}
. (4.22)

Here V(A) = V(A)/(2λR2). Now using Euler-Lagrange equation we get:

∫ +∞

0

dx

{
1

2

(
dA
dx

)2

+ V(A)

}
=

∫ A∗

0

dA
√

2V(A). (4.23)

We note that we can exploit this relation only in one dimension. Therefore the total free

energy of the system is:

F(A∗) =− V0A
∗ + 4λR2

∫ A∗

0

dA
√

2V(A)

=− V0A
∗ + 4

√
λR2

∫ A∗

0

dA
√

(~∆̄/ζ)A2 + ūA4 + wA6. (4.24)

At the transition there exist a relation between the coefficients: ū2 = 4w~∆̄c/ζ , where

∆̄c is the value of the gap at the Brazovskii transition. By rescaling the field amplitude

to, A = A
√
ζū/~∆̄c, we can rewrite the free energy as:

F(A ∗) =− V0

√
~∆̄c/ζūA ∗

+ 4
√
λR2

(
~∆̄c

ζū

)3/2 ∫ A ∗

0

dA

√
A 2 −A 4 +

1

4
A 6. (4.25)

Note that the minimum of the new potential of the field A is at A =
√

2. We define

the dimensionless function g(x), as follows

g(x) =

∫ x

0

dy

√
y2 − y4 +

1

4
y6. (4.26)

This is shown in figure (4.3).
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Figure 4.3: Dimensionless energy g(x) of a radial modulation profile as a function of

the displacement at the origin.

The plot of g(x) shows that this function is monotonic in x. For small x, g(x) is

proportional to x2. With increasing x, the second derivative of g(x) becomes negative.

The slope decreases to zero at x =
√

2 where g(x) has a cusp singularity. For larger x,

the slope starts to increase again and the second derivative is positive once again. The

intermediate region where g′′(x) is negative is unstable. For dimensions above one, this

expression is no longer the exact scale function but the qualitative features remain the

same.

Using this definition we find:

F(A ∗)

/√
~∆̄c/ζū = −V0 A ∗ + 4

√
λR2

(
~∆̄c

ζū

)2

g(A ∗). (4.27)

The stable solution that minimize this free energy satisfies: δF/δA ∗|A ∗s = 0 and

δ2F/δA ∗2|A ∗s ≥ 0. When these conditions are applied, the minimizing A ∗
s is obtained

as plotted in Fig. (4.4) against the impurity potential.

110



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5
V(

A
)

A
A0AB

V(
A

)

A0

A
AB

V0

A∗
s

V0

��
4
√
λR2(�∆̄c/ζū)2
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Figure 4.4: The amplitude of the modulation for the exact solution in one-dimension,

against the impurity potential V0.
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Figure 4.5: The figure shows a schematic of the modulation profile A (r). The red bar

only indicates the location of static impurity and is of no other information. For small

values of the external potential of the impurity, the minimizing profile of the field can

be found within the linear response theory. As see in Fig. (4.4b), the value of the profile

jumps discontinuously close to the other phase, invalidating the perturbative analysis.

This is interpreted as nonlinear response regime.
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Figure 4.6: Variational free energies as a function of the modulation amplutude ρ0.

The black curves show the condensate energy FI(ρ0). The dotted red and solid green

curves show the free energy of the impurity for (1) smaller and (2) larger values of

pseudopotential. (a) Massive impurities: the free energy of the impurity decreases

linearly with ρ0. The total free energy has minima indicated by 1 and 2. For increasing

pseudopotential, the absolute minimum shifts from 1 to 2, corresponding to a transition

from the small polaron to the soliton. (b) includes the zero point energy of a bound-state

particle, which follows the green curves. The minimum at ρ0 = 0 corresponds to the

large polaron. For increasing pseudpotentials, there may be transitions from the large

polaron to the small polaron and then to the soliton or a single transition directly from

the large polaron to the soliton.

4.3.2 Variational Method in Three Dimensions

As mentioned above, the simplest case of the QLB model is the strong damping limit,

when the condensate density modulation can be treated as quasi-static with respect to

the dynamics of the impurity. We take γ →∞ to approach the classical field limit. The

MF minimization of SR
T leads to a radial density modulation around a static impurity at
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the origin of the form

ρ(r) = ρ0
sin(q0r)

q0r
exp(−r/ξ). (4.28)

Generally ρ(r) retains this form if q0r & 1. Using Eq. 4.28 as a trial function (with ρ0

the free parameter), leads to non-linear MF free energy cost FB(ρ0) for radial density

modulations:

FB(ρ0) ' 1

π2q3
0

(
2~∆̄(q0ξ)

πζ
|ρ0|2 + ū|ρ0|4 +

w

2
|ρ0|6

)
(4.29)

where FB(ρ0) has in general the form of a double-well potential with one minimum

at ρ0 = 0 and a second near the modulation amplitude ρ∗ =
√

2|ū|/3w of the or-

dered phase (see Fig.4.6). The second minimum represents the energy cost of a soliton-

type spherically symmetric deformation of the condensate, the center of which has

the structure of the ordered phase while far from the origin the condensate reduces

to the uniform state. At the transition point, the energy cost of the soliton is F∗ '
8~

π3q30ζ
(∆̄c|ū|/w)(q0ξ). If the mass of the impurity is so large (MI � ~2q2

0/ρ0gIB) that

quantum fluctuations of the impurity can be disregarded, the impurity free energy is

FI ' −|gIBρ0| as shown in Fig.4.6(a):

For small gIB the absolute minimum of F(ρ0) = FB + FI as a function of ρ0 is

proportional to gIB (marked “1” in Fig.4.6), which corresponds to the small polaron,

while there is a metastable minimum near ρ∗ that corresponds to the soliton (marked

“2”). For larger values of gIB, the absolute minimum jumps near ρ∗. The soliton state

has lower energy if
8~

π3q3
0ζ

(∆̄c|ū|/w)(q0ξ) . |gIBρ
∗| . (4.30)

Since ξ ∝ ∆̄−1/2, the soliton state necessarily has a lower energy than the polaron state

for sufficiently large correlation lengths and hence linear-response theory must break

down for sufficiently large correlation lengths. When typical values for a pumped BEC

condensate are inserted in this inequality, one finds that the polaron-soliton transition

should be experimentally accessible.
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4.4 Mobile Impurities: Including the Quantum Fluctuations

We studied the nonlinear saddle-point solutions of the Landau-Brazovskii model in the

limit of large damping, where the dynamics of the field is quenched. We further showed

that static impurities can locally stabilize the ordered phase, by lowering the free en-

ergy density of the field around itself. Therefore a “droplet” of the ordered phase can

form (analogous to the “hydration” shell formation), when the impurity is so massive

that can be considered static. Next, we include quantum fluctuations of the impurity

particle. We intuitively expect this to be a destabilizing effect, which contributes a pos-

itive energy cost. This energy cost corresponds to the zero-point motion of the confined

particle. However we will observe in this section that, the droplet survives against these

quantum fluctuations, provided that certain conditions hold.

The effective Lagrangian is:

LI '
1

2
MI|Ṙ|2 + |gIBρ0|

sin(q0R)

q0R
exp(−R/ξ). (4.31)

The impurity free energyFI is obtained from LI by integrating over particle trajectories.

This leads to

FI(ρ0) ' −|gIBρ0|+
3

2
~Ω(ρ0) + ... . (4.32)

The first term is the earlier classical limit while the second term is the lowest-order cor-

rection due to quantum fluctuations. The natural frequency of the bound state impurity

particle in the effective potential is:

Ω(ρ0) =

( |gIBρ0|q2
0

3MI

)1/2

. (4.33)

The bound state disappears if the right-hand side of Eq. (4.32) is positive, in which case

FI should be set to zero (dotted red lines Fig.4.6(b)). The small polaron minimum is

replaced by a minimum at ρ0 = 0 that corresponds to the large polaron. The condition

for the small polaron to survive in the presence of the zero-point fluctuations of the

impurity is glB > gc1 =
√

~3∆̄ξ
MIζ

or αc '
√
χΓ̄, which is just the earlier criterium for
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Landau-Pekar self-trapping. The soliton state is significantly more stable against zero

point fluctuations of the impurity than the small polaron state.

Quantum fluctuations of the condensate are included by treating ρ0(t) as a time-

dependent coordinate with a kinetic energy K = (2πξ/q2
0) (dρ0(t)/dt)2. In the double-

well potential, the condensate coordinate now can tunnel between the two minima, al-

lowing for a linear superposition of the small polaron and soliton states. As the strength

of the quantum fluctuations of the condensate increases, the soliton state disappears,

roughly when the zero point energy of the condensate coordinate exceeds the depth of

the well. The transition between small polaron and soliton states can be viewed in terms

of a variant of spin-boson model.

|gIB|Large Polaron Small Polaron Soliton

Figure 4.7: The different states of the BEC-impurity system. The blue color indicates

the condensate modulation amplitude while the red cloud indicates the particle. From

left to right, large polaron, small polaron, and the soliton.

An important concern regarding the soliton solutions is their instabilities in spatial

dimensions D > 1, due to Derrick’s theorem [95]. We show in the following that the

coupling with the particle’s degree of freedom stabilizes the soliton. Further, Gaussian

fluctuations are shown to be irrelevant in D ≥ 2.

In summary, the QLB theory predicts that impurity particles generate a variety of

structures as the excitation spectrum is progressively depressed. Above the MF transi-
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tion point, the impurity generates either a large or a small polaronic state, depending on

the coupling and damping constant. Below the MF transition—but above the actual or-

dering transition—a new state appears: the soliton with a self-trapped impurity particle

(see Fig.4.7).

4.5 Stability Analysis of Non-topological Solitons in Brazovskii Model

It is well known that any kind of stable solution must survive the fluctuations. The

fluctuations can occur in different forms. A famous type of fluctuations is Gaussian

fluctuations corresponding to the harmonic oscillations of the order parameter field

around the saddle-point solutions. We first study the effect of these fluctuations, in

the absence of the impurity. In other words, the stability conditions derived here are

universal for the model theory.

Another relevant type of instabilities originate from stretching or compressing the

solutions in space. Based on straightforward scaling arguments which utilize the fact

that the free energy density of different terms scale differently under scaling the space

coordinate, one can determine the stability conditions. This is called the Derrick’s

theorem, and can be viewed as a variant of the virial theorem.

4.5.1 Gaussian Fluctuations

In order to examine the stability of the soliton solution, we expand the action to quadratic

order in fluctuations δÃ, so Ã → Ã + δÃ. Here the tildes indicate the dimensionless

quantities at the Brazovskii transition. For simplicity, we focus on the system right at

the Brazovskii transition. It is clear that the generalization to slightly above the tran-

sition is straightforward by expanding the control parameter ∆̄ around its value at the

transition. The free energy of the fluctuations reads:
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δF = 2β

∫
d3r {δÃ(r)K̂ δÃ(r)}, (4.34)

with

K̂ = −∇2 + U(r) (4.35)

the operator of a Schrödringer equation with potential

U(r) =
1

2
∂2
Ã
Ṽ [Ã(r)]. (4.36)

Stability requires all the eigenvalues of K̂ to be positive. When the field — at some

distance from the origin — passes over the barrier of Ṽ(Ã), the potential U(r) becomes

negative, because of the negative curvature of Ṽ(Ã). The mean field solution is unstable

if the ground state of the Schrödinger equation is a negative energy bound state of this

potential well.

The ground state energy is greater than the minimum of U(r) by

∆E =
D

2
Ω, (4.37)

where Ω is the frequency of small oscillations around the minimum of the potential

U(rm), specifically, Ω = |∇2U |1/2r=rm , where rm is the distance from the origin where U

takes its minimum value. In terms of the amplitude Ã, the corresponding minimum is

at Ãm =
√

4/5 (see Fig. (4.8)). In order to have no bound states, we must demand D
2

Ω

to be larger than the barrier of U(r). Also

U(r = 0) =
1

2
∂2
Ã
Ṽ(Ã = Ã0) = 4, (4.38a)

and

U(r →∞) =
1

2
∂2
Ã
Ṽ(Ã = 0) = 1. (4.38b)

We have

Ω = |∇2U |1/2r=rm =


∂

2U

∂Ã2

(
dÃ
dr

)2



1/2

=
√

24

∣∣∣∣∣
dÃ
dr

∣∣∣∣∣ . (4.39)
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Figure 4.8: (Tildes dropped from the labels) The top panel shows V(A) at the transition.

Points A1 and A2, indicate where the curvature flips sign, whereas Am is where the

curvature is minimum. The middle panel shows a schematic of the profile A(r), taking

all the values from A0 down to 0. The bottom one plots the potential U(r) for GFs.

The dashed Gaussian wave-packet shows the ground state of the fluctuations around

the minimum of U(r).
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We also know from Euler-Lagrange equation, that

[
d
dr

+
2(D − 1)

r

](
dÃ
dr

)2

=
d
dr
Ṽ(Ã), (4.40)

and hence, ∣∣∣∣∣
dÃ
dr

∣∣∣∣∣ ≤ |Ṽ(Ã)|1/2 = 6
√

5/25, (4.41)

and Ω ≤ 2.74. The equality is approached either for one dimension, or for large rm in

higher dimensions, where the effect of curvature is negligible. As shown in Fig. 4.8,

the minimum of the potential is Um = −1.4. If Um + D
2

Ω > 1, the bound state does not

form. This is valid for D ≥ 2 (for upper bound of Ω).

A(r)

r

D = 1

D ≥ 2

Figure 4.9: The figure shows a schematic of Gaussian fluctuations around the saddle–

point solution, the soliton. The green arrows squeeze the fluctuations back towards the

soliton, hence represent stability conditions. Red arrows, indicate the situation where

the fluctuations destabilize the soliton.

4.5.2 Stability of Solitons in Scalar Field Theories: Derrick’s Theorem

The soliton solutions of the scalar field theories are shown to be unstable in general, by

Derrick’s theorem. The idea is to consider the stretching-compressing transformations

where the radial coordinate is scaled: r → λr. Following a few straightforward argu-

ments on can see that in D ≥ 2, the solitons are unstable. Suppose that the free energy

120



functional of the time-independent solution φ(r) can be written in the following form:

F =

∫
dDr

{
(∇φ(r))2 + V [φ(r)]

}
. (4.42)

The saddle-point solitonic solutions satisfy: δF = 0, i.e. the first order variations of

the free energy around the solutions vanish. We assume that a function ϕ(r) satisfies

this equation. The stability condition involves the second order variations: δ2F ≥ 0.

We now perform the scaling r → λr, and denote the resultant free energies by Fλ1,2.

Substituting this in the above equation gives:

F1 =

∫
dDr (∇ϕ(r))2 ⇒ Fλ1 = λ2−DF1 , (4.43a)

F2 =

∫
dDr V [ϕ(r)] ⇒ Fλ2 = λ−DF2 . (4.43b)

Applying the first condition:
δF
δλ

∣∣∣∣
λ=1

= 0, (4.44)

we get:

(2−D)F1 −DF2 = 0. (4.45)

So we have:

F2 =
2−D
D
F1. (4.46)

Note that F1 ≥ 0. So if we are expanding around the true vacuum for which F2 ≥ 0,

only D = 1 can satisfy the equation.

Now the stability condition requires that the energy cost of the second order varia-

tions about the solution be positive:

δ2F
δλ2

∣∣∣∣
λ=1

≥ 0. (4.47)

Calculating the l.h.s gives:

(2−D)(1−D)F1 +D(D + 1)F2 ≥ 0. (4.48)

Substituting Eq. (4.46), in the above equation also gives:

2(2−D)F1 ≥ 0. (4.49)

Again for F1 ≥ 0, this suggests that the only acceptable answer is D = 1.
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4.5.3 Derrick’s Instabilities in the Presence of Impurity

Let A(r) be a solution of the Euler-Lagrange equation (dropping tilde signs), including

the impurity potential. The energy of a modulation pattern that is stretched in space by

a scale factor λ, hence A(λr), is given by

U(λ) = λ(2−D)F1 + λ−DF2 + F3 + λ2F4 + ..., (4.50)

where the coefficients

F1 =

∫
dDr

(
dA(r)

dr

)2

, F2 =

∫
dDr V [A(r)], (4.51a)

F3 = −V0A(0), F4 = −1

2
V2A

′′(0), (4.51b)

are all positive. The dots stand for higher-order even powers of λ. We will drop these

terms hereafter, in which case U ' F1 + F2 + F3 + F4, is the energy of the original

soliton. As a function of the scale factor, U(λ) has a single minimum that is stable.

From the fact that A(λr) is a solution of the Euler-Lagrange equations for λ = 1, it

follows that the minimum where dU(λ)/dλ = 0 must be at λ = 1 so

(D − 2)F1 +DF2 − 2F4 = 0 , (4.52)

which can be viewed as a virial theorem. Note that in the absence of the impurity po-

tential, the soliton solution is unstable for D > 1, which is just Derrick’s Theorem, but

that the impurity potential suppresses the instability. Note also that the zeroth moment

of the impurity potential does not enter in this expression, namely a localized static

potential V (r) = V0δ
(D)(r) does not suffice to stabilize the soliton in D > 2, simply

because the contact interaction does not see the stretching and squeezing of the nearby

field. Therefore we need to include higher moments of this potential. The odd moments

vanish by analyticity and symmetry arguments. The first non-zero contribution comes

from the first even moment, i.e. the second moment. It is worth mentioning that the

broadening of the effective interaction range between the impurity and the field has in

principle two origins. For static heavy impurities, the finite range can be assigned to the
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r

A(r)

D = 1

D ≥ 2

Figure 4.10: The figure shows a schematic of Derrick’s instabilities around the sad-

dle-point solution, in the absence of the impurity. Again, the green arrows squeeze the

fluctuations back towards the saddle-point soliton, hence represent stable conditions.

On the contrary, red arrows indicate the situation where the fluctuations destabilize the

soliton.

size of the impurity. For lighter impurities, as we observed in the previous section, the

particle gets trapped at a smaller coupling than the soliton formation. Thus the particle

is confined within a cell of size q−1
0 . In this state, and to the first non-zero approxi-

mation, the wave-function of the particle (or equivalently the ensemble of the particle

trajectories) is a Gaussian like with a finite width. Including the second moment of the

potential also fixes the curvature of the modulation profile at the origin to be:

A′′(0) = −(D − 2)F1 +DF2

V2

< 0 . (4.53)

Since the zeroth moment of the impurity potential is of the order of one at the transi-

tion point between linear response and the soliton solution, and since F1,2 are positive

numbers of the order of one, it follows that the curvature |A′′(0)| ∼ (ξ/a)2 must be

large.
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4.6 Experimental Realization

For a uniform BEC condensate composed of 23Na atoms with 6Li impurities, the di-

mensionless coupling constant α can be tuned between 10−3 − 1 through Feshbach

resonance methods and the large to small polaron transition may or may not be acces-

sible. However, by approaching the critical point, the critical value of α for the tran-

sition between large and small polarons can be decreased to about 0.3 (see Fig.3.6(c))

so the transition between the large and small polaron states now should be experi-

mentally accessible. To estimate the onset of the soliton state, take q0 = 4(µm)−1,

ε0(q0)/h = 2 (kHz), a relative density modulation amplitude (−ū/w)1/2/n0 of the

ordered phase of 0.1, a width δq of the depressed mode interval equal to 0.1q0—so

λ1/2Rδq = ε0(q0)/h = 2 (kHz)—then the condition reduces to the requirement that

aIBξq
2
0 & 2.0. For a scattering length aIB enhanced by Feshbach resonance to 100 (nm),

this requires that the correlation length ξ has only to exceed about ten times the repeat

length q0
−1 of the ordered phase.

For experimental realization, we choose the 23Na condensate hosting a dilute 6Li

impurity gas with mass ratio MB/MI = 3.8 and hence Mr ' 0.8MI. The Lippman-

Schwinger scattering length of Li-Na two-body system is aIB = 0.8 nm. The coupling

between the impurity particle and the Bogoliubov excitations has been proposed to be

tunable via Feshbach resonance, over a few orders of magnitude, from α ∼ 10−3 to

α ∼ 1; hence bridging the small and large coupling regimes. To this end, we need to

minimize the scattering length aBB of sodium atoms, which is achieved at sodium Fesh-

bach resonance near 907 G. The Li-Na scattering length—desired to be maximized—is

tuned near the corresponding Feshbach resonance at 796 G or the predicted 1186 G

resonance. The wavevector q0 ∼ 10−3 nm−1 = 1 µm−1. Therefore the low temperature

limit β ∼ 100 is achieved at around T ∼ 1 nK.
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4.7 Conclusions

In this chapter we studied the problem of impurity-induced solitons in BECs near the

Brazovskii transition. This new type of soliton should be discerned from the intrinsic

soliton solutions of the GPE or equivalently those of the nonlinear Schödinger equation.

Using the renormalized action, we showed that static impurities (local defects) are able

to locally stabilize the ordered phase. We calculated, at the Brazovskii transition, the

amplitude of the soliton at the location of the impurity. This can be calculated ex-

actly in one-dimension, whereas we need to resort to a variational approach in general

dimensions.

For the case of mobile impurities, we derived the conditions under which the zero-

point fluctuations of the impurity do not destabilize the soliton. Furthermore, we ad-

dressed the Gaussian and Derrick’s stability analysis, and observed that Gaussian fluc-

tuations are irrelevant in D ≥ 2, and Derrick’s argument for instability of scalar field

theories in D ≥ 2 becomes invalid in the presences of the impurity.

Regarding the relevance to the phenomenology of solvation problem, in the intro-

duction we posed the question whether impurities in a BEC can serve as a model system

for the study of the role of quantum fluctuations and the breakdown of linear response

theory in solvation theory. We have found that linear response theory breaks down

when a pumped BEC system becomes increasingly correlated on approach of a sponta-

neous symmetry breaking transition, signaled by the formation of a soliton state. Does

this agree, at least qualitatively, with solvation phenomena in conventional fluids? It

is believed that the breakdown of linear response theory for small ions in water is re-

lated to the formation of partially ordered shells of water molecules (“solvation shells”)

around the ion [9]. Water is a highly correlated fluid and solvation shells indeed could

be—crudely—viewed as local realizations of the low-temperature ordered phase (i.e.

ice). On the other hand, the water molecules surrounding solvated electrons, with much

stronger zero-point fluctuations, remain disordered. A recent mixed quantum-classical
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simulation of electrons solvated in water have a wavefuntion that is relatively delocal-

ized (“wet electron”) [17]. According to the theory, a soliton state destroyed by the

zero-point motion of the particle would have to be an extended polaron.

We also addressed the experimental feasibility of our model in a cold atomic ex-

periment. Quantitative experimental studies of impurities in BECs in pumped optical

cavities that would verify the association of the breakdown of linear response theory

with solitons should, according to our estimates, be possible and would be of great

value as a model system to study quantum effects on solvation in a system described

by a general theory that does not require detailed assumptions about molecular interac-

tions.

In the next chapter, we mainly follow the second aim of this dissertation: the physics

of polarons in correlated disordered phases. We generalize our model to the case of a

quadratic impurity-field interaction. The standard polaron problem, and in the previous

chapters, the field appears linearly in the interaction term of the total action. Does

the quadratic coupling influence the polaron properties qualitatively? How does the

dimensionality affects the results? In chapter 6, we first introduce an actual model

system in which the interaction is quadratic. Next, using the variational method as well

as perturbation theory, answer the above questions.
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CHAPTER 5

Polarons in the Vicinity of a Quantum Phase Transition

In order to understand the physics of impurities in critical systems, we first briefly re-

view the most prominent theories of classical and quantum phase transitions. Second

order phase transitions have been center of attraction since the early days of their ob-

servations. They exhibit macroscopic ordering transitions owing to the divergence of

the correlation length ξ. This makes a continuum field theory, e.g. Landau-Ginzburg-

Wilson (LGW), an appropriate approach to study these systems. There are numerous

examples of systems with different symmetry-breaking scenarios between disordered

and ordered phases, which fall into the general LGW scheme. The classical Ising model

in d ≥ 2, for instance, undergoes the ferromagnetic phase transition where the free en-

ergy continuously develops a non-zero minimum of the magnetization. The mean-field

approach is known to be valid, i.e. the fluctuations do not modify the critical behavior,

in spatial dimensions d ≥ du, where du is the upper critical dimension of the theory

(du = 4 for LGW). Also according to Mermin-Wagner theorem, at finite temperatures,

the spontaneous continuous symmetry-breaking is not possible in d ≤ 2. However in

fundamentally discrete systems such as 2D Ising model, this does not hold true.

In the LGW and Hertz-Millis theories of the second-order transitions, the dispersion

of the fluctuations is minimized at zero wave-vector q = 0. The crystallization-like

transitions where the dispersion is minimized at q0, are thus not captured by LGW-type

theories. As we mentioned in the previous chapters, the theory of weak crystallization is

well described by Brazovskii field theory. Apart from its traditional applications, in the

recent years, more systems are found to obey the Brazovskii mechanism. One example
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of artificial realization of such systems in ultracold quantum gases, was presented in

the previous two chapters. In ultracold quantum gases, Bose-Einstein condensates are

proposed to exhibit emergent crystallinity in transversely pumped multimode cavities,

as a result of atom-light interaction [74, 75]. When the strength of the the transverse

field reaches a threshold, the BEC self-organizes itself into a density modulation which

breaks the continuous translational symmetry of the system. The emergent modes and

their wavelengths depend on the geometry of the cavity and are larger than the inter-

atomic distances of the BEC. This transition was shown to persist down to zero temper-

ature, creating a quantum phase transition [74, 75]. In this variant of Brazovskii model,

the effective action of the density field includes only even-powered terms, which results

in transition to lamellar ordered phase. When including odd terms such as a cubic term,

the ordered phase can exhibit three-dimensional unit cells e.g. tetrahedral structures

[91, 92, 93].

Another example of the critical systems which fall into the fluctuation-induced Bra-

zovskii first order transition class is the helimagnetic materials. Helimagnets possess

partial order in the symmetry-breaking phase. The partial order is a result of two

counteracting couplings, one favoring the ferromagnetic order on short length scales,

competing with an antiferromagnetic term which favors staggered ordering on a larger

length scale. This competition is characterized by a new length-scale, which turns out

to be the pitch of the helix formed by the chiral order-parameter (discussed below). The

microscopic origin of such partial ordering might come from the non-centrosymmetric

structure of the unit cells of the lattice. The lack of inversion symmetry in these unit

cell (most notably MnSi), allows the relativistic spin-orbit coupling interaction to play

role, although the spin-orbit coupling is typically minuscule in solid state systems. If

the spin-orbit coupling is absent, the partial order can still be imposed on the system us-

ing an external field (such as pressure) which utilizes the asymmetry of the underlying

lattice.

A phenomenological approach to these systems was proposed by Dzyaloshinskii
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and Moriya. They introduced a chiral interaction term to the action of the critical

model. This chiral term is defined by a coupling D which is commonly called the

Dzyaloshinskii-Moriya (DM) interaction. The preferred wave-vector, or the inverse

length-scale of the partial order is naturally dependent on DM interaction. In the ab-

sence of DM term, we retrieve the Hertz-Millis theory for the second order quantum

phase transitions. For finite values of D, the antiferromagnetic order becomes im-

portant. The newly defined preferred wave-vector and the critical fluctuations of the

corresponding modes, give rise to a fluctuation-induced first order transition similar to

the Brazovskii scenario. In two dimensional thin films this results in the formation of

Skyrmion lattices, which are promising candidates for topological magnetic data stor-

age [96, 97, 98]. In order to perform any kind of computation, we need to understand

the physics of bits or q-bits in the host system.

In this chapter we intend to study the physics of mobile nonmagnetic impurities

(to be defined exactly below) near a magnetic quantum phase transition. Our goal and

motivation are twofold. First, in line with the model used in the previous chapters (the

Brazovskii model), we would like to explore other parts of the phase diagram (e.g. in

terms of the preferred wave-vector), and bridge the gap between truly second order,

and mean-field second-order transitions which turn first order upon including the finite

wave-vector fluctuations. Second, this analysis complements the previously studied

role of static defects near such phase transitions. We know that the attractive nature

of the self-interaction (polaron self-energy), results in the localization of the particle

at sufficiently large particle-field couplings. Whether or not this transition in a nearly

critical environment is discontinuous or smooth is not trivial.

Nonmagnetic defects are usually assumed to couple quadratically to the magneti-

zation field. The magnetic impurities with permanent magnetization (spin), couple lin-

early. However, magnetically polarizable impurities with zero permanent magnetic mo-

ment also couple quadratically to the magnetization field. This can be verified through

a self-consistent condition: the potential energy of a magnetic dipole in an external field

129



is proportional to the dot product of the two vectors. But the induced magnetization of

the impurity is itself proportional to the nearby magnetization. Therefore the coupling

is quadratic in the external field and is in general nonlocal in both time and space. A

simplifying model based on local interactions is presented in this chapter, using which

we examine the physical properties of the mobile impurity. We will observe how the

quadratic coupling changes the behavior of the polaron drastically in various respects.

In order to setup the basis of our model theory, we briefly introduce and discuss

some features of the Hertz-Millis theory of quantum phase transitions. We first derive

the Hertz-Millis effective action. Next, we introduce the chiral Dzyaloshinskii-Moriya

interaction and present the consequences of this term. As expected, the treatment and

the final result are very much similar to those of the original Brazovskii methodology

for scalar field theories.

5.1 Hertz-Millis Theory of Quantum Phase Transitions

We start with a Hubbard Hamiltonian [28, 29]:

HHubbard = −t
∑

〈i,j〉,σ

(c†i,σcj,σ + c†j,σci,σ) + U
N∑

i=1

ni,↑ni,↓. (5.1)

Here c†i,σ, ci,σ are respectively the creation and annihilation operators of an electron at

site i and with spin σ. The first term (H0) represents the non-interacting part which

accounts for the hopping of electrons between neighboring sites denoted by 〈i, j〉 in the

summation; the hopping coefficient is t. The second term is the on-site interactions of

electrons with opposite spins (due to Pauli exclusion). The strength of the interaction

is U . We now note that the interaction term (H′) can be separated in terms of charge-

and spin-density operators:

H′ = U
N∑

i=1

ni,↑ni,↓ =
U

4

N∑

i=1

(ni,↑ + ni,↓)
2 − U

4

N∑

i=1

(ni,↑ − ni,↓)2. (5.2)
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In order to calculate the partition function: Z = Tr exp(−βH), we switch to interaction

picture where we have:

e−βH = e−βH0 T exp

[
−
∫ β~

0

dτH′(τ)

]
, (5.3)

where T is the time-ordering operator. We now use the Hubbard-Stratonovich transfor-

mation to obtain:

Z = Tre−βH =Z0

∫
DΨ exp

(
−1

2

∫ β~

0

dτ
∑

i

Ψ2
i (τ)

)

×
〈

TrT exp

(
−
∫ β~

0

dτ
∑

i,σ

σVi(τ)ni,σ(τ)

)〉

0

. (5.4)

In the above relationZ0 is the partition function of the free system, and we have Vi(τ) =
√
U/2Ψi(τ) is in fact the magnetic field at site i and imaginary time τ . Note that V

accounts for spin fluctuations and we ignore the charge fluctuations as they are expected

to be irrelevant. Now using the Green’s function of the noninteracting system,

G0
i,j(τ, τ

′) = β−1
∑

k,n

exp[ik.(Ri −Rj)− iEnτ ]

iEn − εk
, (5.5)

we can simplify the partition function as:

Z = Z0

∫
DΨ exp

(
−1

2

∫ β~

0

dτ
∑

i

Ψ2
i (τ) +

∑

σ

Tr ln(1− σV G0)

)
. (5.6)

Here V andG0 are matrices. The elements of V are: Vi,j(τ, τ ′) = Vi(τ)δijδ(τ−τ ′). The

exponent in the above equation is then the free energy (or Euclidean action) associate

with the order parameter SHertz; we denote the free energy by SHertz[Ψ]. Expanding the

free energy in a power series in Ψ leads to the following general expression:

SHertz[Ψ] =
1

2

∑

q,ωn

v2(q, ω)|Ψ(q, ω)|2 +
1

4βN

∑

qi,ωi

v4(q1ω1,q2ω2,q3ω3,q4ω4)

×Ψ(q1, ω1)Ψ(q2, ω2)Ψ(q3, ω3)Ψ(q4, ω4) δ

(
4∑

i=1

qi

)
δ

(
4∑

i=1

ωi

)
+ ... .

(5.7)
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Here v2 and v4 are the vertices. In certain cases the vertices can be calculated, and the

full Euclidean action takes the form:

SHertz =
1

βV

∑

q,ωn

ε0(τ + ξ2
0 |q|2 + |ωn|/γ(q))φq,ωnφ−q,−ωn + S4. (5.8)

In the above relation ε0 and ξ0 are microscopic energy- and length-scales respectively.

We note that the above calculation is carried out for a metallic system in which the

particle-hole excitations cause the Landau damping, hence the dynamics of the order

parameter is overdamped. In a more general form, the dynamic term is replaced by

Sdyn =
1

2βV

∑

q,ωn

(
1

c2
q

+
1

Γq|ωn|

)
|ωnφ(q, ωn)|2. (5.9)

We list four different systems and the corresponding dynamical coefficients, in table

(5.1).

Class cq Γq

Undamped Ising antiferromagnet const. →∞
Undamped Ising ferromagnet ∼ 1/q const.

Metallic (overdamped) antiferromagnet — const.

Metallic Ising ferromagnet — ∼ q

Table 5.1: The dynamical coefficients for different critical systems near the magnetic

phase transition.

As mentioned in the introduction of this chapter, if we deal with systems with non-

centrosymmetric structures (i.e. lacking the inversion symmetry), e.g. the unit cell

of MnSi, the effect of spin-orbit coupling (SOC) term which also breaks the time-

reversal symmetry becomes important. Such couplings collectively add a chiral term

to the original Hertz-Millis action. This term is represented by a phenomenological

coupling constant D, and is called the Dzyaloshinskii-Moriya (DM) interaction. The

DM magnets (also called helimagnets) in three dimensions, exhibit a chiral phase below
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the transition point. This is somewhat similar to the “Blue phase” of cholesteric liquid

crystals. The static action of the bare field near the magnetization transition can be

written as [34, 35]:

Sstat
bare =

∫ β

0

dt
∫

ddx
{
λ

2

∑

i

(∇Mi)
2 + DM.(∇×M)

+
τ

2
|M|2 +

g

4
|M|4 −H.M

}
, (5.10)

where M(r, t) is the magnetization field (M and φ will be used interchangeably in

the context), and where i lables {xi} = (x1, ..., xd); the d spatial coordinates. The

second quadratic term is the Dzyaloshinskii-Moriya (DM) interaction due to lack of

inversion symmetry and hence SOC. In spite of the relativistic nature of SOC, it can

shown that this term (DM) dominates other contributions arising from anisotropies such

as
∑

i(∂iMi)
2 and

∑
iM4

i (see Ref. [34] and references therein). Next, τ measures the

distance from the critical point of the mean-field model, and u measures the strength

of forth order nonlinearities which is a positive constant to guarantee the stability. For

convenience we choose the units in which [M(r, t)]2 = [Length]−d.

The dynamics of the order parameter is determined, for example, by coupling to

the electron-hole excitations around the Fermi surface. Again in a general form the

dynamic term is expressed as [34, 99]:

Sdyn
bare =

1

~β

+∞∑

n=−∞

1

ΓεF
(~|ωn|/εF )2/z|M(r, ωn)|2, (5.11)

where Γ−1 is the dimensionless dynamical coefficient. At finite temperature we intro-

duce the Matsubara frequencies ωn = 2πn/β~ as the Fourier conjugate of imaginary

time.

5.1.1 Systems Without Inversion Symmetry: Helimagnets

Systems without inversion symmetry (chiral magnets), most notably MnSi, allow for

SOC which collectively yields the DM interaction. In has been shown that such systems
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exhibit a fluctuation-induced first order phase transition, which falls into a quantum

version of the Brazovskii class of phase transitions, i.e. the kernel of the action takes

the following form:

χ−1
q̄ = θ + µ(|q| −Q)2 + Γ−1|ωn|2/z, (5.12)

where Q = q0 ~/
√
MεF .

Here, we briefly review the MF analysis of a bare helimagnetic system [35]. At MF

level, we use the following ansatz for the vectorial order parameter M, to minimize

the bare action. The ansatz contains terms which represent the para- and helimagnetic

phases separately:

M = φ0φ̂0 + ψhele
iQ.rê− + ψ∗hele

−iQ.rê+, (5.13)

in which φ0 and φ̂0 are the paramagnetic background field and its direction and ψhel

is the complex amplitude of the helical order with pitch vector Q, a free parameter to

be determined by minimizing the free energy, and finally ê± = (ê1 ± iê2)/
√

2, such

that ê1 × ê2 = Q̂ and Q̂ = Q/Q. We assume that below the transition, there is

an infinitesimal external magnetic field to single out a direction for the paramagnetic

background of the ordered domains (φ̂0) to be oriented along Ĥ, also parallel to the

pitch vector Q̂. In general, even in the absence of external magnetic field, higher order

contributions of SOC break the rotation symmetry by generating cubic anisotropies, e.g.

〈111〉 is the preferred crystallographic direction in MnSi. For simplicity we neglect the

cubic anisotropies and instead include a small external field.

Inserting the ansatz of Eq. (5.13) in the original static action, we get Sbare
stat = βLdf0,

where,

f0 =
θ

2
φ2

0 + (θ + µQ2 − 2DQ)|ψhel|2

+
u

4
(φ2

0 + 2|ψhel|2)2 −Hφ0, (5.14)

is the free energy density which gives us the equation of state of the phase when min-

imized with respect to the fields and free parameters. In the above equation D =
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D ~/
√
Mε3F , is the dimensionless DM coefficient, and u = g (

√
MεF/~)d/εF is the

dimensionless quartic coefficient. In the paramagnetic phase where |ψhel| = 0, the uni-

form magnetization φ0 is parallel to the external field φ̂0 = Ĥ and satisfies the equation

of state: θφ0 + uφ3
0 = H . The solutions of this equation in the limit H → 0 are: zero

for θ > 0 and ±
√
−θ/u for θ < 0. Now minimizing with respect to the pitch vector

Q, we get: Q = D/µ. In the limit of zero external field, the minimized free energy

density of the helimagnetic order parameter ψhel reads,

fHM = ∆|ψhel|2 + u|ψhel|4 (5.15)

where ∆ = θ − µQ2 is the gap of the chiral mode, which is the paramagnetic gap

shifted by the deformation cost of the mode Q. For ∆ > 0 the DM interaction is

not large enough to overcome the paramagnetic gap θ and |ψhel|. When increasing the

chiral interaction, ∆ becomes negative for D2 ≥ θµ, the helical order parameter favors

a finite magnitude |ψhel| =
√
−∆/2u. Below we discuss the consequences of this

non-zero ordering wavevector Q, on a mobile impurity.

In the previous chapters we studied the interplay of a quantum mechanical particle

linearly coupled to the density of an ultracold BEC which is interacting with a trans-

verse as well as the photons of a multimode cavity. As mentioned above, the system

undergoes an emergent crystallinity above a threshold laser intensity, and is describe

by the LB theory. In particular the role of the large quantum/thermal fluctuations of the

BEC was investigated on the quantum mechanical features of the particle. It was shown

that the particle, far from the transition and at zero temperature, experiences a discon-

tinuous self-trapping transition, which is closed at a “critical” point, as the quantum

fluctuations of the field are enhanced. Thermal fluctuations also close the discontinu-

ity. Close to the LB transition a new class of non-linear solutions appear which cannot

be obtained perturbatively. In that system, the local tendency of the field towards or-

der around the particle yields the emergence of a “droplet” of the ordered phase. The

boundary between the coexisting ordered and disordered phases, is of the order of the

finite correlation length.
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In this chapter we study a single mobile impurity coupled to a field near a second

order or a weakly first order quantum phase transition. To this end, we (i) generalize

the case of study of chapters 3 and 4 to quadratic particle-field coupling, in (ii) general

spatial dimensions d and dynamic exponents z = 1, and finally (iii) vary the pre-

ferred wave-vector q0 from zero (corresponding to Hertz-Millis theory) to finite values

corresponding to LB-type transitions. In particular for this model system of itinerant-

electron magnetism, we discuss and derive—based on heuristic arguments—that non-

magnetic impurities couple quadratically to the magnetization field. The case of linear

coupling is already solved for many of the above-mentioned cases. For example, the

case of q0 = 0, at the critical point is similar to “acoustic polaron”, where the particle

is interacting with Goldstone phonons. Away from the critical point, where the mode

spectrum has a gap at q = 0, the theory resembles the “optical polaron”. These cases

are well studied in the literature of polaron problem. Therefore, in the case of linear

coupling we calculate the polaron properties as a function of this gap, in general dimen-

sions, and also at finite q0. We finally compare the results of the quadratic and linear

couplings and find significant differences between the two. In particular, we observe in

three dimensions, to one loop order and also using Born-Oppenheimer approximation

for the field (corresponding to the frozen field dynamics in the limit of large effective

mass of the mode), the quadratic coupling makes the wave-function collapse. Fur-

thermore we show this localization takes place at a finite coupling constant when the

quantum fluctuations of the field are added.

Our approach to this problem is mainly based on the Feynman’s variational method

to calculate the self-energy and effective mass of the polaron. Throughout this chapter,

we keep the magnetic transition as our model system, mainly for concrete interpretation

of the parameters.

136



5.2 Model Field Theory

We start with the Hamiltonian of the Hubbard model interacting with a dilute electri-

cally neutral bosonic impurity gas in their zero magnetization single particle states. The

impurity gas is assumed to be of low enough concentration such that the atoms do not

see each other and we neglect this term in our Hamiltonian.

We write the partition function in the imaginary-time path-integral representation:

Z =

∫
D[φ(x, t)]D[R(t)] exp(−S[φ(x, t); R(t)]/~). (5.16)

The action S is the full action of the system plus impurity which consists of three

terms: bare field, free particle, and their interaction (see below). The path-integration

is over all the spatial and imaginary-temporal configurations of the field φ(x, t) and

particle coordinate R(t), under the periodic boundary condition in imaginary time i.e.

φ(x, 0) = φ(x, β~) and R(0) = R(β~). We start with the action of the quantum field

plus particle.

• Bare Action:

For notational convenience we rename the magnetization field φ(r, t) ≡ M(r, t). The

full bare action of the field equals:

Sbare =
1

2

∫
dd+1q̄

(2π)d+1
φ∗q̄ χ

−1
q̄ φq̄ +

g

4

∫ 4∏

i=1

(
dd+1q̄i

(2π)d+1
φq̄i

)
δ(d+1)

(
4∑

i=1

q̄i

)
, (5.17)

where q̄ = (q, ω) denotes the momentum (d + 1)-dimensional vector, and we use the

definition ∫
dd+1q̄/(2π)d+1 ≡ (β~Ld)−1

∑

q,ωn

(5.18)

for a d-dimensional system with linear size L at temperature β−1.

In the quadratic kernel

χ−1
q̄ = τ + λ(|q| − q0)2 + Γ−1εF (~|ωn|/εF )2/z , (5.19)
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εF is the Fermi energy of the itinerant electrons, and τ the distance to the critical point.

The preferred wave-vector is q0 = D/λ. The field stiffness λ and the dynamic coeffi-

cient Γ−1 are positive constants. The exponent 2/z measures the quantum-to-classical

field crossover for increasing z. The important cases of z = 1, 2 correspond to un-

damped and overdamped (Landau damping) dynamics, respectively.

5.3 Quadratic Polaron

We now introduce an impurity which couples quadratically to the system. In a semi-

classical approximation for the magnetization of the impurity with large total angular

momentum, we assume that the induced magnetization is proportional to the local mag-

netic field which is in turn, predominantly determined by the nearby magnetization field

of the host system. Thus in a self-consistent approach, for the magnetic interaction en-

ergy we have:

U = −m(t).B(R(t)), (5.20a)

m(t) =

∫ t

dt′$(t− t′)B(R(t′)). (5.20b)

where $(t − t′) is the temporal kernel of the polarizability of the impurity magnetic

moment. We approximate this polarizability by$(t−t′) = $δ(t−t′). For the magnetic

field at the position of the impurity we have:

B(R(t)) =

∫
ddrJ (|R(t)− r|)M(r, t). (5.21)

We first use J (r) = J0δ
(d)(r), and get:

U = −$J 2
0 |M(R(t))|2. (5.22)

The sign of the magnetic polarizability of the impurity determines the nature of its effec-

tive magnetic interaction with the magnetization of the medium; either ferromagnetic

or antiferromagnetic. However as we shall see below, up to one-loop order approxima-

tion of the self-energy, this sign is unimportant. For a finite mass impurity, there exists
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a kinetic term. Then the total action of the impurity reads:

Simp. =

∫ β~

0

dt
M

2
|Ṙ|2 +

1

2

∫ β~

0

dt
∫∫

ddrddr′ J (r−R(t))J (r′ −R(t))φ(r, t)φ(r′, t).

(5.23)

The second term can be cast in Fourier form,

S int.
imp. =

$

2

∫ β~

0

dt
∫∫

ddq1

(2π)d
ddq2

(2π)d
φ∗q1

(t)φq2(t)J ∗q1
Jq2e

−i(q2−q1).R(t). (5.24)

As discussed above, we can choose a potential of the form J (|r|) = J0 δ
(d)(r), where

J0 ≡ −$J 2
0 . We note that when |φ(r, t)|2 has dimensions of [Length]−d, we have

[J0] = [Energy]× [Length]d.

Although the above equation is local in time, it can represent the most general

bilinear coupling of the particle to the field in space. Another possibility which can be

viewed as a model for the coupling of non-magnetic impurities to a magnetization field

is [100, 99]:

S int.
imp. =

1

2

∫ β~

0

dt
∫

ddrV (r−R(t))|φ(r, t)|2, (5.25)

in which case the vertex productJ ∗q1
Jq2 in Eq. (5.24) is replaced by Vq1−q2 (see below).

It is clear that the models are equivalent for J (r− r′) = J0δ
(d)(r− r′), such that

J 2
0 δ

(d)(R− r)δ(d)(R− r′) ≡ V0δ
(d)(r− r′). (5.26)

The action of the full system is the sum of the actions of the bare field and impurity,

and their interaction. Using the latter form of coupling, we derive the full action:

S =

∫ β~

0

dt
M

2
|Ṙ|2 +

1

2

∫
dd+1q̄

(2π)d+1
χ−1
q̄ |φq̄|2

+
g

4

∫ 4∏

i=1

(
dd+1q̄i

(2π)d+1
φq̄i

)
δ(d+1)

(
4∑

i=1

q̄i

)

+
1

2

∫∫
dd+1q̄1

(2π)d+1

dd+1q̄2

(2π)d+1
φ∗q̄1φq̄2

∫ β

0

dt V−k̄(t). (5.27)

The first three terms correspond to the free particle and bare action, respectively, while

the last term represents their interaction. Defining k̄ = q̄2 − q̄1 the interaction potential
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equals:

V−k̄(t) = Vq1−q2 exp[i(ω2 − ω1)t− i(q2 − q1).R(t)]. (5.28)

Due to the quadratic nature of the coupling the field-impurity interaction induces cou-

pling between the diagonalizing modes of the field. We note that, away from the critical

point, although the coupling to the impurity is a perturbative effect to the field, it can

be disturbing enough to the particle to localize it.

Like in the case of polaron problem, we are interested in calculating the effective

action for the particle. To this end, we integrate out the field’s degrees of freedom. We

thus consider the quartic and impurity-field interactions as perturbations to the diagonal

quadratic action of the field. Defining

A[φ,R] =
1

2

∫∫
dd+1q̄1

(2π)d+1

dd+1q̄2

(2π)d+1
φ∗q̄1φq̄2

∫ β

0

dt Vk̄(t)

+
g

4

∫ 4∏

i=1

(
dd+1q̄i

(2π)d+1
φq̄i

)
δ(d+1)

(
4∑

i=1

q̄i

)
, (5.29)

we get,

Seff[R(t)] = S0
imp. + 〈A〉G −

1

2!
[〈A2〉G − 〈A〉2G] + ... , (5.30)

where S0
imp. action of the free impurity and 〈•〉G is the average of • with respect to

the unperturbed diagonal Gaussian field action. It is easy to see that 〈A〉G is indepen-

dent of R, hence irrelevant. The second cumulant includes four-, six- and eight-point

correlation functions. The first non-zero contribution is:

S(1)
imp. = −1

2

∫∫
dd+1q̄1

(2π)d+1

dd+1q̄2

(2π)d+1
χq̄1χq̄2 |V−k|2

∫∫ β

0

dtdt′eiΩ|t−t
′|−ik.(R(t)−R(t′)),

(5.31)

in which Ω = ω2−ω1 and k = q2−q1. For V (r) = V0δ
(d)(r) (contact interaction) we

have |Vk| = V0. We note again that the sign of the polarizability becomes irrelevant in

this approximation, as V0 appears quadratically in Eq. (5.31).
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q̄2

k̄ = q̄2 − q̄1 k̄ = q̄2 − q̄1

−q̄1

Figure 5.1: The Feynman diagram corresponding to equation (5.31) for quadratic

polaron. Straight and wavy lines represent the particle and the field propagator, re-

spectively. The incoming particle of momentum k̄ ≡ (k,Ω), is scattered off the

phonons with momenta q̄1 ≡ (q1, ω1) and q̄2 ≡ (q2, ω2). The space and time

translation symmetry requires the conservation of momenta at each vertex, such that:

(k,Ω) = (q2 − q1, ω2 − ω1).

We now switch to dimensionless parameters by setting ~ = εF = M = 1. Thus

length is measured in units of ~/
√
MεF = λF

√
me/M , proportional to Fermi wave-

length; me is the mass of electron. Time is measured in units of ~/εF . Also β → εFβ,

(q, ω)→ (q ~/
√
MεF , ω~/εF ). In these units we have:

χ−1
q̄ = θ + µ(|q| −Q)2 + Γ−1|ωn|2/z, (5.32)

where θ = τ/εF , µ = λM/~2 , Q = q0 ~/
√
MεF = (D/λ) ~/

√
MεF and thus

χ−1
q , are all dimensionless. So the effective action for the particle in dimensionless

parameters reads:

Seff[R(t)] =
1

2

∫ β

0

dt |Ṙ|2 − α
∫∫ β

0

dtdt′ |χ̃(∆R(t, t′); ∆t)|2, (5.33)

where we introduced the shorthand notation ∆R(t, t′) ≡ R(t)−R(t′) and ∆t = t− t′

and χ̃(r, t) is the inverse Fourier transform of χq̄. We introduced α, the dimensionless

polaron coupling constant:

α =
1

2

(
V0

εF

)2 (
MεF
~2

)d
. (5.34)

We note that to first non-zero order in the coupling V0, the effective action looks like

that of the linear polaron, with the inverse correlation function squared.
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For z = 1, time can be treated on the same footing as space. The correlation

function decays in space and time over the correlation length (ξ) and correlation time

(1/
√
εFΓλ ξ), respectively. In spatial dimensions d we get the following relations for

the limiting cases (i) : |r|2/µ+ Γt2 � θ−1 and (ii) : |r|2/µ+ Γt2 � θ−1:

χ̃z=1(r, t) '





(i) µ−d/2Γ1/2

(d−1)Sd+1
(|r|2/µ+ Γt2)−(d−1)/2,

(ii) µ−d/2Γ1/2θ(d−2)/4

(d−1)Sd+1

exp[−
√
θ(|r|2/µ+Γt2)]

(|r|2/µ+Γt2)d/4
,

The above approximate expression is in general dimensions.

The general form of the action can be modified for gaining various insights. For

instance, one can take the inverse Fourier transform to time domain, leaving the q-

dependence explicit:

S(1)
imp. =− (ΓεF )2

8

∫∫ β

0

dtdt′
∫∫

ddq1

(2π)d
ddq2

(2π)d
|V−k|2

× G(−q1, |t− t′|)G(q2, |t− t′|)e−ik.∆R(t,t′) (5.35)

where the two-point correlation function is:

G(q, u) =
1

ωq

cosh(ωq(u− β/2))

sinh(βωq/2)
, (5.36)

where ω2
q = ΓεF (τ+λ|q|2). The kernel reduces in the zero temperature limit (β →∞)

to:

G(q, u) =
1

ωq

exp[−ωqu]. (5.37)

This form is specifically useful for variational method.

• Variational Method

The path-integral over the degrees of freedom are most conveniently carried out using

Feynman’s variational approach. The effective mass and self-energy of the particle can

be evaluated using this method. We introduce the trial action:

St = S0
imp. +

1

2

∫∫ β

0

dtdt′ K(|t− t′|)|∆R(t, t′)|2, (5.38)
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and use the Feynman’s inequality F ≤ Ft + 1
β
〈Seff − St〉t, for the free energy of the

impurity. The average is taken with respect to the Gaussian trial action. The trial kernel

K(|t − t′|) = β−1
∑

nKneiΩn|t−t
′|, should be chosen to best mimic the actual kernel,

yet contains free parameters to account for the difference in the form of R-dependence,

i.e. to minimize the free energy.

Kn =
C

β

∑

m

{[
B + Γ−1|ωm|2/z

][
B + Γ−1|ωm + Ωn|2/z

]}−1

, (5.39)

or,

K(u) =
C

β2

∑

m,`

{
e−iωmu

B + Γ−1|ωm|2/z
e+iω`u

B + Γ−1|ω`|2/z
}

= C |Φz(B, β;u)|2, (5.40)

with C and B the variational parameters playing the roles of coupling constant α and

the distance to the critical point θ, respectively. Note that besides the fact that Γ is

dimensionless, its presence is merely for later interpretational convenience. In general

it can be absorbed in the definition of C, B. For z = 1, we have Φz=1(B, β;u) ≡ G(q =

0, u)|θ=B.

With the trial kernel Kn we can calculate the upper bound of the free energy. Af-

ter angular integration between the vectors q1 and q2 we get for the average of the

interaction part of the original action:

lim
β→∞

〈S(1)
imp.〉t
β~

=
−αΓ2S2

d

(2π)2d

∫∫ ∞

0

dq1dq2q
d−2
1 qd−2

2

∫ β~

0

du G∗(q1, u)G(q2, u)

× 1

Λ(u)

{
exp[−|q1 − q2|2Λ(u)]− exp[−|q1 + q2|2Λ(u)]

}
, (5.41)

where Λ(u) is given by:

Λ(u) =
2

β

∑

n>0

gn[1− cos(ωnu)], (5.42)

in which

gn =
1

ω2
n + 2(K0 −Kn)

. (5.43)
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5.3.1 Quadratic Polaron Near a Classical Phase Transition

The limit of simultaneous classical order parameter and quantum impurity is achieved

in the limit β εz.p � 1 while (τΓ)−1 � β2/z; altogether ε−1
z.p � β � (τΓ)−z/2. In

this regime the order parameter behaves classically and the phase transition is classical.

However since the temperature is much smaller than the zero point motion of the par-

ticle, the latter ought to be treated quantum mechanically. In this limit, only the zero

frequency terms of the order parameter correlation functions contribute to the action,

and Eq. (5.31) reduces to:

S(1)
imp. =− α

2β2

∫∫
ddq1

(2π)d
ddq2

(2π)d
χq1χq2|V−k|2

∫∫ β

0

dtdt′e−ik.∆R(t,t′). (5.44)

In three dimensions we get:

S(1)
imp. =

−α
2β2θ2(2π)4ξ6

∫∫ β

0

dtdt′
exp(−2|∆R(t, t′)|/ξ)
|∆R(t, t′)|2/ξ2

=
−α

2β2(2π)4µ2

∫∫ β

0

dtdt′
exp(−2|∆R(t, t′)|/ξ)

|∆R(t, t′)|2 , (5.45)

where χq ≡ χq,ω=0 = (θ + µq2)−1. We note that this result is naturally independent

of z. This corresponds to a single quantum mechanical particle in a time-independent

potential. The ground-state energy of the particle is then achieved by the effective

potential well, created by the field configuration. Far from the critical point, where

λ/τ � m2
eεF/M~2 = λ2

Fme/M , the kernel is dominated by the exponential part with

correlation length ξ/2.

This is equivalent to a nonlocal non-linear Schrödinger equation (NLSE) with a

time-independent Hamiltonian. The potential is a two point function:

V̂d=3(x̂, x̂′) ∝ exp(−2|x̂− x̂′|/ξ)
|x̂− x̂′|2 . (5.46)

The hat above the parameters indicates their operator nature. In the following, when

they are projected onto x-space, we drop the hats. The time-independent Schrödinger

equation is derived from the energy functional:
[−~2

2M
∇2 +

∫
ddx′|ψ(x′)|2Vd(|x− x′|)

]
ψ(x) = Eψ(x). (5.47)
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Such a problem has been shown to feature the “collapse” of the wave-function in d ≥ 2,

for singular potentials V (x,x′) ∼ f(x − x′)/|x − x′|ν with ν ≥ 2. The collapse is

defined mathematically when the norm of the gradient of the wave-function diverges:

Collapse:
(∫

ddx |∇ψ|2
)1/2

→∞. (5.48)

Therefore, it is clear that in the case of quadratic polaron, d = 1, 2 would not support

the collapse. In d = 3, the potential has the required singularity to yield the collapse of

wave-function. Note that this is the direct consequence of quadratic coupling. Linear-

coupling in three dimensions, results in a potential decaying as ∼ 1/|x−x′| [101]. We

will demonstrate in the following, that the localization (collapse) of the wave-function

occurs at a finite coupling constant after adding the quantum fluctuations of the field.

5.3.2 Quadratic Polaron Near a Quantum Phase Transition

In the case of a quantum phase transition, dynamic terms of the field also contribute to

the properties of the polaron. There are a few points that we need to mention here. The

averages 〈S(1)
imp.〉 is convergent for linear coupling in all physical dimensions d = 1, 2, 3

and for the delta potential. In the case of quadratic coupling the integrals converge for

d = 1, 2 and for delta potential but diverge for d = 3. This is the consequence of

unphysical choice of the contact potential. The divergence originates from the equal-

time (u → 0) correlations. In order to regularize this, we introduce a soft cutoff of the

form exp(−q2/q2
c ), where qc is the cutoff, and can be regarded as the range of the actual

potential.

By introducing the cutoff we observe a similar behavior as in the acoustic polaron.

The effective mass transforms smoothly from extended to localized for small cutoffs.

For larger cutoffs, the transition becomes first order. The onset of this first order line

signifies a critical point at around qc ' 20. Below we present the results of effective

mass of a quadratic polaron, at zero temperature and for z = 1:
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Figure 5.2: Effective mass of the quadratic polaron in d = 3 and for q0 = 0. Different

colors correspond to different cutoffs qc = 80, 100, 150, 200, while other parameters

are fixed at θ = µ = 1. As we see, in the case of quadratic coupling the effective mass

exhibits a first-order localization, as opposed to the linear coupling in all dimensions

(see for example Fig. 5.4), and also quadratic coupling in lower dimensions.

146



0 100 200 300 400 500 600 700 800 900 1000
100

101

102

103

104

105

 

 

 1D
 2D

lo
g
1
0
(M

∗ /
M

)

α

q0 = 0

0
0 200 400 600 800 1000

1

2

3

4

5

Figure 5.3: Effective mass of the quadratic polaron in d = 1, 2. The transition from

extended to localized state is smooth for q = 0. In order to obtain a discontinuous

transition, a minimum q0 is required which increases for lower dimensions.
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5.4 Linear Coupling and Comparison

Now, in order to compare our results, we study the case where an impurity is linearly

coupled to a nearly critical field. We use the same parameters θ, µ,Γ, but we note

that their physical interpretation might be different from the case studied in previous

sections. The action of the impurity reads

SLimp =

∫ β

0

dt
{
M

2
|Ṙ|2 +

∫
ddr V (r−R(t))φ(r, t)

}
. (5.49)

Next, the action of the bare field is the same as in Eq. (5.17). Due to lack of the

impurity-induced mode coupling, we can integrate out the field degrees of freedom

exactly. This leads to the following effective action Seff/~ for the impurity with a new

dimensionless coupling constant for the linear coupling αL.

SLeff =
1

2

∫ β

0

dt|Ṙ|2−αL
∫∫ β

0

dtdt′
∫

dd+1q̄

(2π)d+1
χq̄ e

iω|t−t′|−iq.∆R(t,t′), (5.50)

where χq̄ is given by Eq. (5.32), and

αL =
1

4

(
V0

εF

)2(
MεF
~2

)d/2
. (5.51)

Note that the difference with the case of quadratic coupling is the power of the second

factor on the r.h.s. For θ = 0, the problem resembles a variant of acoustic polaron,

whereas θ 6= 0 corresponds to optical polaron, where the impurity interacts with a

gapped optical phonon. An interesting question is the behavior of the effective mass as a

function of gap. We will see below that this behavior is dependent on the dimensionality

as well as the coupling constant.

The main features of linear coupling was captured in chapters 3 and 4. We here

complement this analysis by extending the calculation to general dimensions and also

their dependence on q0.
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Figure 5.4: Effective mass as a function of the coupling constant and q0 for d = 3.

Here θ = µ = 1. As expected, a minimum q0 is required for the first order transition in

the case of linear coupling.
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Figure 5.5: At q0 = 0 and µ = 1, the effective mass is plotted against α and log10 θ

is plotted for d = 3. For intermediate and large coupling constants, the effective mass

decrease as we move away from critical point. This trend is not necessarily true for

couplings αL . 1. The effective mass of the polaron develops a maximum at around

θ ' 1. Figures (5.6),(5.7) and (5.8), demonstrate this property for certain values of αL,

and compare the results with those of the one- and two-dimensional systems.
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different dimensions. While for d = 1, 2 the effective mass decreases monotonically

upon increasing θ, in d = 3, the effective mass shows a maximum.
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Figure 5.7: At αL = 1, q0 = 0 and µ = 1, the effective mass against θ is plotted for

d = 3 (zoomed-in Fig. (5.6)).

152



M
∗ /

M

0 2 4 6 8 10

θ

1D
2D
3D

0

100

200

300

400

Figure 5.8: At αL = 10, q0 = 0 and µ = 1, the effective mass against θ is plotted

for d = 1, 2, 3. In large enough couplings, the maximum of effective mass in d = 3

disappears.
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5.5 Conclusions

In line with our second goal of understanding the role of quantum fluctuations on the

polaron properties, we extended our model from the previous chapters, to the case

of quadratic coupling. We proposed a model system which supports this coupling.

We took the Hertz-Millis theory of second-order quantum phase transitions and its

generalization to the case of helimagnets which requires an additive chiral term, the

Dzyaloshinskii-Moriya interaction. This interaction induces a fluctuation-induced first

order transition of the previously introduced Brazovskii form. Therefore the model

seems to be a good candidate for studying the role of quadratic couplings within the

same framework as in the previous chapters.

We observe that in three dimensions, the behavior of polaron is significantly altered

by quadratic coupling. In the linear coupling case, a minimum preferred wave-vector

q0 of the field is required to localize the particle in all dimensions. However quadratic

coupling in three dimensions was shown to cause the collapse of the wave-function in

the classical field limit. After including the quantum fluctuations of the field, in three

dimensions a divergence appears because of the nonphysical contact potential. We

introduced a soft Gaussian cutoff to regularize this. For small cutoffs qc . 20 the tran-

sition is smooth. Increasing the cutoff opens up a gap in the effective mass. This is very

similar to the case of acoustic polaron. We note that the effective mass of the polaron

increases very rapidly as a function of α, even before the discontinuity is approached.

The numerical values are obtained for a specific set of parameters θ = µ = 1, and thus

ξ = 1. For shorter correlation lengths, the transition takes place at smaller couplings.

In d = 1, 2 the situation is qualitatively the same as the linear coupling. For q0 = 0, the

transition remains smooth, and a minimum q0 is required to cause the first order tran-

sition. The minimum required value of q0 is larger for lower dimensions (as expected),

and is zero for d = 3.
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Although the main features of the linear coupling case was addressed in chapters

3 and 4, we extended the phase diagram by varying q0, so to compare the results with

the quadratic case. At q0 = 0, we also calculate at small αL = 1 and large couplings

αL = 10, the effective mass as a function of distance from the critical point of the field.

For αL = 1, the effective mass is monotonically decreasing for d = 1, 2 whereas it

develops a maximum in d = 3 (see Figs. (5.6,5.7)). At larger couplings αL ' 2, the

maximum of the 3D case disappears and becomes monotonically decreasing like 1D

and 2D cases. It is noteworthy that the dimensionless coupling constants in both linear

and quadratic cases, are themselves dependent on the dimensionality, and thus, have

different expressions in terms of the actual parameters, for each dimension. In all the

above calculations, we have absorbed this dependence in the definition of α.
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CHAPTER 6

Appendix

In the appendix of this dissertation, we first present in section 6.1, the details of the

molecular dynamics (MD) simulations performed to obtain the results of the classical

charge particle in water. Next, in section 6.2, we review the traditional polaron prob-

lem and present their results based on perturbation theory and variational method. We

finally introduce the formalism of the classical fluctuation-induced first order phase

transitions in section 6.3, specifically the Brazovskii renormalization approach.

6.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are performed using the Gromacs simulation

package. Throughout this study, the SPC/E water model is used, which consists of

three point charges arranged in a fixed geometry with partial charges zH = +0.4238 on

the hydrogen atoms and zO = −0.8476 on the oxygen atom. Dispersion interactions

between the water molecules are modeled by a Lennard-Jones interaction centered on

the oxygen atom.

We consider systems of two different sizes: The smaller system consists of 895

water molecules in a cubic box with periodic boundary conditions. At T = 300 K this

corresponds to a box size of roughly 3.0 × 3.0 × 3.0 nm3. We perform simulations

at a temperature of T = 300 K and at a pressure of p = 1 bar. The system is equili-

brated first in aNV T ensemble (constant particle number, volume and temperature) for

t = 50 ps and then in a NPT ensemble (constant particle number, pressure and tem-
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perature) for t = 10 ns, in order to determine the box size corresponding to the pressure

of p = 1 bar. The box size is then set to the average obtained in the NPT simulation

and after an additional equilibration of t = 50 ps production runs are performed in the

NV T ensemble for t = 0.4 ns. Configurations are saved with the full time resolution

of δt = 0.002 ps. Additionally, longer simulations are run for t = 2.0 ns and configura-

tions are saved with a time resolution of δt = 0.01 ps. To determine the heat capacities

at constant volume cv and constant pressure cp, additional simulations at temperatures

of T = 280 and 320 K are performed in the NV T and NPT ensembles for t = 10 ns,

respectively.

To reach lower wave vectors and to obtain a better resolution of the low-wave vector

region of the dynamic structure factor, we also simulate a larger system containing

≈ 33000 water molecules, which corresponds to a box size of 10× 10× 10 nm3, in the

NV T ensemble for t = 2.0 ns, where configurations are saved each δt = 0.01 ps, after

equilibration in the NPT ensemble for t = 2.0 ns.

A Berendsen weak coupling thermostat and barostat with a relaxation time of τ =

1.0 ps is used for temperature and pressure control. All non bonded interactions are

cut off at a radius of rc = 0.9 nm. Long-range electrostatic interactions are treated by

the particle mesh Ewald method with tinfoil boundary conditions. For the Lennard-

Jones interaction an analytic long-range correction is applied to energy and pressure.

The bonds and angles in the water molecules are kept fixed using the analytic SETTLE

algorithm, and a timestep of 2 fs is used for the integration of the equations of motion.
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6.2 Polaron Theory

The notion of Polaron was first introduced by Landau. Searching for the possible

sources of conductivity in ionic crystals, Landau and Pekar [102] considered the effects

of fluctuations of the ion cores around their equilibrium position, i.e. phonons, on elec-

trons. When the oscillations of ion cores are frozen, the electron is subject to a periodic

potential with the periodicity of lattice constant. Such a problem is well understood; the

electrons form the Bloch bands. Upon including the phonons, the Hamiltonian of this

systems consists of three terms, corresponding to: (1) the kinetic energy of the electron,

(2) the energy of the optical phonons, and (3) electron-phonon interaction. In the weak

coupling regime, where the electron is extended over many lattice sites, the system is

usually described by Fröhlich Hamiltonian:

ĤFröh = Ĥe + Ĥph + Ĥe-ph. (6.1)

where Ĥe and Ĥph are the free electron and phonon Hamiltonians respectively, while

the last term Ĥe-ph is their interaction. We introduce each term below.

Ĥe =
∑

q,n,s

εn,q,sc
†
n,q,scn,q,s, (6.2a)

Ĥph =
∑

k,ν

~ωk,νb
†
k,νbk,ν , (6.2b)

Ĥe-ph =
∑

q,k,n,n′,s,ν

γn,n′(q,k, ν)ωk,νc
†
n′,q,scn,q−k,sbk,ν + H.c. (6.2c)

where εn,q,s is the eigen-energy of the free electron part in band n, momentum q and

spin s. Similarly for the second contribution we have, ~ωk,ν is the energy of phonons

with momentum k and band index ν. The last term is the electron-phonon interaction

with vertex γn,n′(q,k, ν). This term accounts for electrons-phonon scattering. In the

above we have used the shorthand notation:
∑

k ≡
∫

d3k
(2π)3

.
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Fröhlich Hamiltonian describes the polaron as an electron-field interaction. An

electron-lattice model, in the limit of strong coupling where the electrons are localized

is usually studied using the Holstein Hamiltonian,

ĤHol = −t
∑

〈ij〉,s

(c†i,scj,s + H.c.) + ~ω0

∑

i

b†ibi + g
∑

i

ni(b
†
i + bi). (6.3)

Here i, j label the lattice sites, and 〈ij〉 means the summation over nearest neighbors.

Therefore the first term accounts for hopping events between neighboring sites i, j.

Also (c†i , ci) and (b†i , bi) denote the (creation,annihilation) operators of the electron and

lattice ions respectively. Finally the last term represents with the local interaction of

electron number ni =
∑

s c
†
i,sci,s, and the displacement of the ion cores.

6.2.1 Optical Polaron

Optical polaron forms as a result of the interaction of the electron with longitudinal

optical phonon. The optical phonons have a relatively dispersionless spectrum where

the frequency is—within the range of interest—independent of the wave-vector: ωk =

ωopt. The dispersion relations of the acoustic and optical phonons are shown in Fig. 6.1.

For simplicity, we can ignore and drop spin and band indices and assume the in-

teraction of an electron with mass M , with a single optical mode. Setting ~ = ωopt =

Me = 1, we get:

Ĥ =
P2

2
+
∑

k

b†kbk + i(
√

2απ)1/2
∑

k

1

|k| [b
†
ke
−ik.R − bke+ik.R]. (6.4)

Here (R,P) are the canonical (position,momentum) coordinates of the electron. The

components of these coordinates satisfy [Ri, Pj] = i~δi,j . Also α is the dimensionless

electron-phonon coupling constant, given by:

α =
e2

2~ωopt

(
1

ε∞
− 1

ε0

)(
2Mωopt

~

)1/2

(6.5)

where e is the charge of the electron, and where ε∞ and ε0 are the high-frequency and

static dielectric constants of the medium respectively.
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Figure 6.1: Dispersion relations of the acoustic and optical phonons. We note that

optical branch is gapped whereas the acoustic branch is gapless at k = 0. In the general

form, the gap at the Brillouin zone implies that there are more than one atoms per unit

cell. For atoms with equal masses, the gap closes at the edge of the Brillouin zone

k = π/a.

In the following we briefly review the results of second order perturbation theory,

as well as variational method.

• Second order perturbation theory:

We consider the interaction term as a perturbation to the free terms. Therefore we

would like to calculate the energy shift due to this interaction ∆E0. We assume that

the unperturbed Hamiltonian is diagonalized in the basis |n〉, which represent the si-

multaneous eigenstates of the particle and phonons. To second order perturbation we

have:

∆E0 = H00
e-ph +

∑

n

H0n
e-phH

n0
e-ph

E0
0 − E0

n

+ ... , (6.6)
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where Hnm
e-ph = 〈n|Ĥe-ph|m〉, and E0

n is the nth eigenvalue of the unperturbed Hamilto-

nian. We see from Eq. (6.4) that Ĥe-ph changes the number of phonons. Thus the first

term in the above perturbative expansion vanishes. The second term is the first contri-

bution, corresponding to an electron-phonon scattering. The initial and final states are,

an electron with momentum P and with no phonons present, whereas the intermediate

state corresponds to an electron with momentum P− k, and a phonon with momentum

k. We finally need to integrate over all possible k’s. It turns out that the energy shift

can be written in the following form:

∆E0 = −4
√

2πα

∫
d3k

(2π)3

1

k2(k2 − 2P.k + 2)
= −α

√
2

P
sin−1 P√

2
. (6.7)

For the particle at rest, P → 0, we get ∆E = −α. If we include higher orders of α, we

get:

∆E = −α + 0.0126α2. (6.8)

If we instead expand the r.h.s of the last equality in Eq. (6.7) for small P , we get:

∆E =
P 2

2(1 + α/6)
− α, (6.9)

which suggests that the effective mass of the polaron can be obtained by:

M∗/M = 1 + α/6. (6.10)

• Variational method:

Unlike the case of electron-photon interaction with coupling constant, α = e2/~c =

1/137, (with c the velocity of light), the coupling constant of electron-phonon interac-

tion for typical polar crystals is of the order α ∼ 3−6. This implies that the perturbation

theory fails very fast. In order to study the intermediate and large couplings, Feynman

proposed an all-coupling variational approach based on path-integral formalism. This

approach was introduced in treatment of the Bose-polaron problem where using the

Bogoliubov shift, one can map the electron-atoms interaction to a Fröhlich type Hamil-

tonian. Here we present the results for the simplest case of an electron interacting with
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longitudinal optical phonons, originally presented by Feynman. The advantage of this

method (of course with the aid of computers) is its capability to bridge the small and

large coupling regimes. The formulation starts with the definition of partition function:

Z = e−βF = Tr[e−βH ] =
∑

i

e−βEi . (6.11)

The free energy F is dominated by the ground-state E0 in the zero temperature limit

β →∞. The trace in the above equation can be calculated using path-integral method;

Z = Tr[e−βH ] =

∫
D(path)e−S. (6.12)

In order to better make use of this representation it is convenient to transform the

creation-annihilation operators of the phonon to their displacements and conjugate mo-

menta, corresponding to the motion of crystal, namely:

qk =
1√
2

(b†k + b−k), (6.13a)

pk =
i√
2

(b†−k − bk). (6.13b)

If we use the present form of these coordinates, the electron-field interaction turns out

to be pk-dependent, which is not suitable. By performing a canonical rotation in the

(qk, pk) or in the (b†k, bk) spaces, we can resolve this issue. After these transformations

we obtain the full Hamiltonian,

Ĥ =
P2

2
+
∑

k

1

2

(
p2
k + q2

k

)
+
√

2(
√

2πα)1/2
∑

k

1

|k|qke
ik.R. (6.14)

We can now interpret the shorthand measure D(path):

Tr[e−βH ] =

∫
R(0)=R(β)
qi(0)=qi(β)

e−S D[R(u)]D[q2(u)]D[q1(u)]... (6.15)

where the action is,

S =

∫
du

{
|Ṙ(u)|2

2
+
∑

kk

1

2

(
q̇2
k(u) + q2

k(u)
)

+
√

2(
√

2πα)1/2
∑

k

1

|k|qk(u)eik.R(u)

}
.

(6.16)
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We note that the path-integral over the field degrees of freedom can be carried out due to

its Gaussian form. We are then left with and effective Euclidean action for the particle:

S =
1

2

∫ β

0

dt |Ṙ|2 −
√

2πα

∫∫ β

0

dtds
∫

d3k

(2π)3

1

k2
e−|t−s|eik.(R(t)−R(s)). (6.17)

As we see, the coordinate of the particle does not appear quadratically. Therefore the

path-integral cannot be performed exactly. We now introduce a trial action, with a few

adjustable parameters to minimize the free energy.

St =
1

2

∫ β

0

dt |Ṙ|2 +
C

2

∫∫ β

0

dtds e−W |t−s||R(t)−R(s)|2 (6.18)

where we assume the particle is interacting through a spring with constant K = MW 2

and a coupling constant C = MW 3/4.

The Feynman’s variational inequality utilizes the convexity of the exponential func-

tion e−f and, thus the inequality 〈e−f〉 ≥ e−〈f〉. Using this inequality, an appropriate

relation can be derived between the free energies of the original and trial actions, and

their actions:

F ≤ Ft +
1

β
〈S − St〉t. (6.19)

The subscript t in 〈•〉t means averaging using the weights e−St , corresponding to the

trial action. In the zero temperature limit, one can replace F and Ft by ground-state

energiesE andEt, respectively. According to the above inequality, we need to calculate

〈S〉t, i.e. the average of the original action with respect to trial action. We note that this

can be done by calculating,

〈e−ik.(R(t)−R(s))〉t = exp

[
−k

2

2

{
W 2

V 2
|t− s|+ 4C

WV 3
[1− e−|t−s|V ]

}]
, (6.20)

in which the dependent parameter V is defined by V 2 ≡ W 2 + 4C/W , for later

convenience. We can also calculate E0 and 〈St〉t immediately, using the fact that

Et(C = 0) = 0. Consequently the Feynman’s inequality reads:

E ≤ 3

4V
(V −W )2 − αV√

π

∫ ∞

0

du e−u
[
W 2u+

V 2 −W 2

V
(1− e−uV )

]−1/2

. (6.21)
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We now need to minimize the above action with respect toW,V . This can only be done

analytically for the small and large α, separately.

Small coupling: For small α, we expect C to be very small, thus one can take

V = W (1 + ε). Using this approximation we will obtain for the ground-state energy

and the effective mass of the polaron,

E ≤ −α− 0.0123α2, (6.22a)

M∗/M = 1 +
α

6
+ 0.025α2. (6.22b)

We remember that from perturbation theory, the result is

E = −α− 0.0126α2. (6.23)

Large coupling: In the large coupling regime, we use another approximation: V/W �
1. This leads to the following relations:

E ≤ −α2/2π − 3

2
(2 ln 2 + γ)− 3

4
+O(1/α2), (6.24a)

M∗/M = (2α/3π)4. (6.24b)

In the first equation γ is the Euler-Mascheroni constant, γ = 0.5772.

The intermediate coupling regime can be explored using numerical methods. As

a result of exact minimization with respect to W,V , we obtain the following result:

Figure (6.2) shows that upon cranking up the coupling constant, the extended polaron

with an effective mass of the order of the bare mass, is transformed continuously to a

self-trapped polaron with large effective mass.
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Figure 6.2: Top panel (a) shows the minimized ground-state energy as a function of the

dimensionless coupling constant. (b) shows effective mass versus α. We note that the

transition between the small and large coupling is smooth.
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6.2.2 Acoustic Polaron

In addition to the optical phonons where the neighboring lattice sites oscillate out

of phase, there exists another branch of phonons, the “acoustic” phonons. Acoustic

phonons are gapless Goldstone modes, which arise as a result of continuous transla-

tional symmetry. For ionic mass m, and elastic constant of the interatomic potential

K, we define ω =
√
K/m, in terms of which the dispersion relation of the acoustic

phonons reads (see Fig. 6.1):

ωk = 2ω |sin(ka/2)| , (6.25)

where a is the lattice constant. In the k → 0 limit, the dispersion becomes linear:

limk→0 ωk = ωa|k|.

Acoustic polaron is created when an impurity particle is added to a bath of acoustic

phonons. We can follow the same lines as in the case of optical polaron. According

to Peeters and Devreese [72], the final result of the effective mass and self-energy of

acoustic polaron is dependent on the momentum cutoff. Beyond a certain large cutoff,

the effective mass of the polaron indicates a discontinuity at a critical coupling constant

of order α ∼ 0.1.

Figure (6.3) shows that for large enough momentum cutoffs k0, upon cranking up

the coupling constant, the extended polaron with an effective mass of the order of the

bare mass, is transformed discontinuously to a self-trapped polaron with large effective

mass. We note that this is similar to the behavior of Bose-polaron in harmonic traps.

The similarity is mainly because the Bogoliubov excitations look like acoustic phonons

in the small k regime.
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Figure 6.3: (From Ref. [72]) Top panel (a) shows the minimized ground-state energy

as a function of the dimensionless coupling constant. (b) shows effective mass versus

α. Beyond a certain cutoff k0, the transition becomes discontinuous.
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6.3 Fluctuation-induced First Order Phase Transitions

We repeatedly discussed the importance of the critical modes with finite wave-vector,

and used in particular the consequences of the Brazovskii renormalization approach.

We mentioned that in spatial dimensions d ≥ 2, the fluctuations around the momentum

shell with radius q0, renders the second-order mean-field transition, a weakly first-order

transition. This is also called the weak crystallization theory, as the first order jump re-

mains small; hence a large correlation length. In fact the justification of a field theoretic

(continuum) description of a first order transition lies in the weakness of transition. In

this section we demonstrate the renormalization procedure of a class of the Brazovskii

action.

6.3.1 Brazovskii Class of Phase Transitions

We start with the Euclidean action of the Brazovskii model, which can be written as a

sum of a quadratic and a quartic terms; S = S(2) + S(4):

S =
1

2!

∑

q,ν

φ∗q,ν
(
ω2
ν + ∆ + λR2(|q| − q0)2

)
φq,ν + S(4). (6.26)

The first term of the r.h.s corresponds to the quadratic part S(2). The dynamics is

assumed to be undamped. We note that u > 0 is required for stability. The second

term, the quartic contribution, can be written in the Fourier form:

S(4) =
U

4!

∑

{qi},{νi}

φq1,ν1φq2,ν2φq3,ν3φq4,ν4δ
(d)

(
4∑

i=1

qi

)
δ

(
4∑

i=1

νi

)
. (6.27)

A class of static saddle-point solutions can be suggested as:

φ(x, τ) = A exp(iq0.x), (6.28)

which correspond to modes (in all directions), with wave-vector q = q0. The amplitude

of this mode is denoted by A. The modes clearly are time-independent corresponding

to ων = 0, where the quantum fluctuations are quenched. The Euler-Lagrange equation
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for A, determines the amplitude of the mode:

δS
δA

= ∆A+ uA3 = 0. (6.29)

For ∆ > 0, the acceptable solution is A = 0. The amplitude can be nonzero for ∆ < 0.

In this case we get: A =
√
−∆/u.

This mean-field order-parameter is equivalent to the one used in the classical model

where the frequency summation is dominated by ων = 0 term. In the classical form the

quadratic term reads:

S(2)/~ ≡ βF =
1

2!

∑

q

φ∗q
(
∆ + λR2(|q| − q0)2

)
φq. (6.30)

In any case, when the action is treated like a Landau-Ginzburg model, i.e. assuming

a large correlation length in the vicinity of the transition, such that the coarse-graining

procedure is legitimate, the Brazovskii model, at the mean-field level, predicts a second

order critical point at ∆ = 0. This is, however, not the correct fate of the story. In

order to investigate the effects of fluctuation, one needs to design an appropriate renor-

malization analysis, where the high-energy modes around q = q0 are integrated out

step-by-step. Their effects are then included in the renormalized coefficients.

6.3.2 Renormalization Procedure

The renormalization procedure in classical systems can be carried out separately in

space and time (if required). The statics and dynamics of classical systems are inde-

pendent. At zero temperature, where the quantum effects are most significant, space

and time are no longer independent. One needs to carefully integrate out the high-

energy modes in momentum and frequency spaces simultaneously. In other words, in

each step of this process, the momentum- and frequency-shells shrink together. The

RG program presented in this section is based on the one presented in Ref. [75].

We first recast the action in a more convenient form for RG process:
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S(2) =
1

2!

∫
d1∆(1, 2)φ(1)φ(2)δ(1 + 2), (6.31a)

and,

S(4) =
1

4!

∫
d1d2d3d4u(1, 2, 3, 4)φ(1)φ(2)φ(3)φ(4) δ(1 + 2 + 3 + 4). (6.31b)

In the above notation, we have
∫

d1 ≡ 1

(2π)d

∫
dΩ1

∫

|q−q0|<Q
qd−1

0 dq1

∫ +∞

−∞
dω1, (6.32)

where Ω is the solid angle, and Q is the renormalization group scale. We are now ready

to perform the RG transformation, by first integrating out the modes in a momentum

shell that satisfy: Q/b ≤ |q− q0| ≤ Q, with b = 1 + `, and `� 1, and second rescaling

the length-scales which results in: q → bq and φ → φ/b. Under these transformations

the two-point vertex transforms to:

r(Q)→ r(Q/b) = b2

(
∆(Q) + Pu1(Q)

∫ Q

Q/b

dq
1

∆(Q) + q2

)
, (6.33)

where P ∝ q2
0 is called the self-energy coefficient. Using b = 1 + `, we get:

dr
d`

= 2∆(Q) +
QPu1(Q)

[∆(Q) +Q2]1/2
. (6.34)

We note that the four-point vertex now renormalizes in different manners, depending

on how many of the fields (two or four) are identical. Hereon, u1 refers to the one with

two identical fields, whereas u2 corresponds to the four identical fields part. For the

two renormalized vertices (u1, u2) we get:

du1

d`
= 2u1 −

Pu2
1Q

∆(Q) +Q2
+

Pw1Q

[∆(Q) +Q2]1/2
, (6.35a)

du2

d`
= 2u2 − 2

Pu2
1Q

∆(Q) +Q2
+

Pw2Q

[∆(Q) +Q2]1/2
. (6.35b)

Here, w denotes the six-point vertex, which becomes essential as u might flip sign and

is then insufficient for the stability of the free energy. For exactly the same reason as for

u, the six-point vertex also renormalizes depending on whether two, four, or six fields
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are identical. But in order to make the RG flow equations dimensionless, we first make

the following change of cariables:

Q = Qe−`/
√
PU, (6.36a)

∆̄(Q) = ∆(`) e−2`/(PU), (6.36b)

ū{i}(Q) = u{i}(`) e
−2`U, (6.36c)

w{i}(Q) = w{i}(`) e
−2`P2/U. (6.36d)

In terms of the new RG scale parameter Q and others, we can write down the flow

equations as follows:
d∆̄

dQ = − ū1[
∆̄ +Q2

]1/2 , (6.37a)

dū1

dQ =
ū2

1

∆̄ +Q2
− w1[

∆̄ +Q2
]1/2 , (6.37b)

dū2

dQ =
2ū2

1

∆̄ +Q2
− w2[

∆̄ +Q2
]1/2 , (6.37c)

dw1

dQ =
3ū1w1

∆̄ +Q2
− 2ū3

1[
∆̄ +Q2

]3/2 , (6.37d)

dw2

dQ =
4ū1w1 + ū2w2

∆̄ +Q2
− 4ū3

1[
∆̄ +Q2

]3/2 , (6.37e)

dw3

dQ =
8ū1w2

∆̄ +Q2
− 12ū3

1[
∆̄ +Q2

]3/2 . (6.37f)

The numerical integration of the above equations results in the renormalized parame-

ters, which are shown in Fig. (6.4).
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ū

(d)
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Figure 6.4: (From Ref. [75]) The renormalization group flows of different parameters

in the quantum Brazovskii model. (a) shows how the renormalize gap ∆̄ decreases as

the bare gap ∆ is lowered below the mean-field transition value ∆ = 0. (b) shows

the same diagram for renormalized quartic coefficient ū. As apparent from the figure,

ū flips sign around ∆ ' −3.5, where according to (a), ∆̄ ' 1. When ū becomes

negative, the stabilization of the free energy is destroyed. However (c), demonstrates

how during the renormalization process, a positive sixth-order nonlinearity with the

coefficient w, emerges which is required for the stabilization. Finally (d) shows the

resultant free energy (action), as a function of the order parameter, the amplitude of the

mode q0.
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