Skip to main content
eScholarship
Open Access Publications from the University of California

Error Detection and Error Classification: Failure Awareness in Data Transfer Scheduling

Abstract

Data transfer in distributed environment is prone to frequent failures resulting from back-end system level problems, like connectivity failure which is technically untraceable by users. Error messages are not logged efficiently, and sometimes are not relevant/useful from users point-of-view. Our study explores the possibility of an efficient error detection and reporting system for such environments. Prior knowledge about the environment and awareness of the actual reason behind a failure would enable higher level planners to make better and accurate decisions. It is necessary to have well defined error detection and error reporting methods to increase the usability and serviceability of existing data transfer protocols and data management systems. We investigate the applicability of early error detection and error classification techniques and propose an error reporting framework and a failure-aware data transfer life cycle to improve arrangement of data transfer operations and to enhance decision making of data transfer schedulers.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View