Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Quantification of edema reduction using differential quantitative T2 (DQT2) relaxometry mapping in recurrent glioblastoma treated with bevacizumab

Abstract

The purpose of the current study was to quantify the reduction in T2 signal abnormality accompanying administration of the anti-angiogenic drug bevacizumab in recurrent glioblastoma (GBM) patients using a voxel-wise differential quantitative T2 (DQT2) mapping technique. Twenty-six patients with recurrent GBM treated with bevacizumab were scanned before and 4-6 weeks after treatment on a 1.5T clinical MR scanner. Quantitative T2 maps were created from proton density and T2-weighted images acquired using a standard multi-echo fast-spin echo sequence. T2 maps after treatment were co-registered with T2 maps prior to treatment in the same patient, and then voxel-wise subtraction was performed to create DQT2 maps for each patient. Results suggest DQT2 maps allow visualization and quantification of voxel-wise T2 changes resulting from anti-VEGF therapy. Results demonstrated a significant decrease in T2 within pre-treatment T2 abnormal regions (mean reduction = 49.4 ms at 1.5T) following anti-VEGF treatment (Wilcoxon signed rank test, P < 0.0001). An elevated residual, post-treatment, median T2 was predictive of both progression-free (Log-rank, P = 0.0074) and overall survival (Log-rank, P = 0.0393).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View