Skip to main content
Open Access Publications from the University of California

Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster.

  • Author(s): Hudson, RR
  • Bailey, K
  • Skarecky, D
  • Kwiatowski, J
  • Ayala, FJ
  • et al.
Creative Commons 'BY' version 4.0 license

DNA sequence variation in a 1410-bp region including the Cu,Zn Sod locus was examined in 41 homozygous lines of Drosophila melanogaster. Fourteen lines were from Barcelona, Spain, 25 were from California populations and the other two were from laboratory stocks. Two common electromorphs, SODS and SODF, are segregating in the populations. Our sample of 41 lines included 19 SodS and 22 SodF alleles (henceforward referred to as Slow and Fast alleles). All 19 Slow alleles were identical in sequence. Of the 22 Fast alleles sequenced, nine were identical in sequence and are referred to as the Fast A haplotypes. The Slow allele sequence differed from the Fast A haplotype at a single nucleotide site, the site that accounts for the amino acid difference between SODS and SODF. There were nine other haplotypes among the remaining 13 Fast alleles sequenced. The overall level of nucleotide diversity (pi) in this sample is not greatly different than that found at other loci in D. melanogaster. It is concluded that the Slow/Fast polymorphism is a recently arisen polymorphism, not an old balanced polymorphism. The large group of nearly identical haplotypes suggests that a recent mutation, at the Sod locus or tightly linked to it, has increased rapidly in frequency to around 50%, both in California and Spain. The application of a new statistical test demonstrates that the occurrence of such large numbers of haplotypes with so little variation among them is very unlikely under the usual equilibrium neutral model. We suggest that the high frequency of some haplotypes is due to natural selection at the Sod locus or at a tightly linked locus.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View