- Main
Achieving Sub-Hz Frequency Symmetry in Micro-Glassblown Wineglass Resonators
Published Web Location
https://doi.org/10.1109/jmems.2013.2286820Abstract
We demonstrate, for the first time, sub-1 Hz frequency symmetry in micro-glassblown wineglass resonators with integrated electrode structures. A new fabrication process based on deep glass dry etching was developed to fabricate micro-wineglasses with self-aligned stem structures and integrated electrodes. The wineglass modes were identified by electrostatic excitation and mapping the velocity of motion along the perimeter using laser Doppler interferometry. A frequency split (Δ f) of 0.15 and 0.2 Hz was demonstrated for n=2 and n=3 wineglass modes, respectively. To verify the repeatability of the results, a total of five devices were tested, three out of five devices showed Δ f<5 Hz. Frequency split stayed below 1 Hz for dc bias voltages up to 100 V, confirming that the low frequency split is attributed to high structural symmetry and not to capacitive tuning. High structural symmetry (< 1 Hz) and atomically smooth surfaces (0.23 nm Sa) of the resonators may enable new classes of high performance 3-D MEMS devices, such as rate-integrating MEMS gyroscopes. © 1992-2012 IEEE.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-