Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Heterogeneous Integration on Silicon-Interconnect Fabric using fine-pitch interconnects (≤10 �m)

Abstract

Today, the ever-growing data-bandwidth demand is pushing the boundaries of the traditional printed circuit board (PCB) based integration schemes. Moreover, with the apparent saturation of semiconductor scaling, commonly called Moore's law, system scaling warrants a paradigm shift in packaging technologies, assembly techniques, and integration methodologies. In this work, a superior alternative to PCBs called the Silicon-Interconnect Fabric (Si-IF) is investigated. The Si-IF is a silicon-based, package-less, fine-pitch, highly scalable, heterogeneous integration platform for wafer-scale systems. In this technology, unpackaged dielets are assembled on the Si-IF at small inter-dielet spacings (≤100 �m) using fine-pitch (≤10 �m) die-to-substrate interconnects. A novel assembly process using a solder-less direct metal-metal (gold-gold and copper-copper) thermal compression bonding was developed. Using this process, sub-10 �m pitch interconnects with a low specific contact resistance of ≤0.7 Ω-�m2 were successfully demonstrated. Because of the tightly packed Si-IF assembly, the communication links between the neighboring dies are short (≤500 �m) with low loss (≤2 dB), comparable to on-chip connections. Consequently, simple buffers can transfer data between dies using a Simple Universal Parallel intERface for chips (SuperCHIPS) at low latency (<30 ps), low energy per bit (≤0.03 pJ/b), and high data-rates (up to 10 Gbps/link), corresponding to an aggregate bandwidth up to 8 Tbps/mm. The benefits of the SuperCHIPS protocol were experimentally demonstrated to provide 5-90X higher data-bandwidth, 8-30X lower latency, and 5-40X lower energy per bit compared to existing integration schemes. This dissertation addresses the assembly technology and communication protocols of the Si-IF technology.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View