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• Wireless sensing systems are very useful for applications where we need to learn about
environmental phenomena over spatial and temporal fields.

• Parametric models are widely used to represent these environmental fields and to answer
questions and inferences regarding the phenomena.

• Choosing a model structure to represent the field  involves a great deal of uncertainty.

• Often data are collected at random locations. We present methods for data collection to
optimize the desired inferences.

• Often a single model M is used. If M does not characterize a phenomenon correctly, the
inferences and predictions will not be accurate.

• It is better to start with multiple plausible models and select the model by collecting
measurements at informative locations.
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Algorithm: T-Designs [1]

  1.Two model case:

Evaluation:
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Likelihood: M2/ M1=2.18*105

Problem Description: Optimal Sensor placement
Where should we collect measurements to optimally
choose a model that represents the field?

Assumptions: A set of plausible models.
                        The set contains the correct model.

    Gaussian noise.

Idea: Find the locations where the “difference”
between the two models is the largest.

Derivation:
 Two model case

[1] A.C. Atkinson and V.V. Fedorov. Optimal design: Experiments for discriminating between
several models. Biometrika 62, 289-303, 1975.

Regression
• The polynomial regression Model:
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• Vector form:

• We assume Gaussian noise, the ML estimate of θ is given by

• The estimation error covariance matrix is given by

• The error covariance matrix depends on the design matrix X and does not
depend on the measurements.

Problem Description: Optimal Sensor placement
Where should we collect measurements to optimally
estimate the parameters of the regression model?

Assumptions: The model used is the correct model.
    Gaussian noise ( Ce = I ).

Idea: Find the locations that result in “the smallest”
error covariance matrix.

Technically:
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Algorithm: D-Designs
The minimization problem is convex and be solved
with any convex optimization software.

Multiple model estimation:
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We can setup three problems for this case:
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This is a binary hypothesis test and the probability of
error is given by
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2. Multiple model case:

Model Estimation:
• Optimal designs for robust model estimation.

• Optimal designs for multiple modality fields while incorporating the
correlation between the modalities.

•  Spatio-temporal fields.

Model Selection:
• Investigate the effect of the prior probabilities on the design.

• Extend the work presented to situations when the set of models
considered does not include the correct model.
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