- Main
pH- and thermo-sensitive MTX-loaded magnetic nanocomposites: synthesis, characterization, and in vitro studies on A549 lung cancer cell and MR imaging
Published Web Location
https://doi.org/10.1080/03639045.2017.1397686Abstract
In the current study, we proposed a facile method for fabrication of multifunctional pH- and thermo-sensitive magnetic nanocomposites (MNCs) as a theranostic agent for using in targeted drug delivery and magnetic resonance imaging (MRI). To this end, we decorated Fe3O4 magnetic nanoparticles (MNPs) with N,N-dimethylaminoethyl methacrylate (DMAEMA) and N-isopropylacrylamide (NIPAAm), best known for their pH- and thermo-sensitive properties, respectively. We also conjugated mesoporous silica nanoparticles (MSNs) to polymer matrix acting as drug container to enhance the drug encapsulation efficacy. Methotroxate (MTX) as a model drug was successfully loaded in MNCs (M-MNCs) via surface adsorption onto MSNs and electrostatic interaction between drug and carrier. The pH- and temperature-triggered release of MTX was concluded through the evaluation of in vitro release at both physiological and simulated tumor tissue conditions. Based on in vitro cytotoxicity assay results, M-MNCs significantly revealed higher antitumor activity compared to free MTX. In vitro MR susceptibility experiment showed that M-MNCs relatively possessed high transverse relaxivity (r2) of about 0.15 mM-1·ms-1 and a linear relationship between the transverse relaxation rate (R2) and the Fe concentration in the M-MNCs was also demonstrated. Therefore, the designed MNCs can potentially become smart drug carrier, while they also can be promising MRI negative contrast agent.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-