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Abstract: Open, Grass- and Forb-Dominated (OGFD) ecosystems, including tundra, tropical
grasslands and savanna, provide habitat for both wild and domesticated large ungulate herbivores.
These ecosystems exist across a wide temperature gradient from the Arctic regions to the Equator, but
are confined to a narrow set of moisture conditions that range from arid deserts to forest-dominated
systems. Primary productivity in OGFD ecosystems appears extremely sensitive to environmental
change. We compared global trends in the annual maximum and mean values of the Normalized
Difference Vegetation Index (NDVI) and identified the key bioclimatic indices that controlled
OGFD productivity changes in various regions for the period from 1982 to 2011. We found
significantly increased or decreased annual maximum NDVI values of 36.3% and 4.6% for OGFD
ecosystems, respectively. Trends in the annual mean NDVI are similar for most OGFD ecosystems
and show greater area decreases and smaller area increases than trends in the annual maximum
NDVI in global OGFD ecosystems during the study period. Ecosystems in which the productivity
significantly increased were distributed mainly in the Arctic, mid-eastern South America, central
Africa, central Eurasia and Oceania, while those with decreasing trends in productivity were mainly
on the Mongolian Plateau. Temperature increases tended to improve productivity in colder OGFD
ecosystems; and precipitation is positively correlated with productivity changes in grassland and
savannas, but negatively correlated with changes in the Arctic tundra. Simple bioclimatic indices
explain 42% to 55% of productivity changes in OGFD systems worldwide, and the main climatic
predictors of productivity differed significantly between regions. In light of future climate change,
the findings of this study will help support management of global OGFD ecosystems.

Keywords: NDVI; bioclimatic index; stepwise multiple regression; grassland; savanna; tundra

1. Introduction

Open, Grass- and Forb-Dominated (OGFD) ecosystems are areas in which the vegetation is
dominated by grasses and forbs. On a climatic gradient, these ecosystems are situated between forest
(wetter) and desert or ice-land (drier) [1,2]. These systems are divided into three main types: tundra,
grassland and savanna. Tundra is generally vegetated with a mixture of grasses, sedges and forbs
along with small shrubs. Savanna is typically grass-dominated with a low density (<20% cover) of
trees and tall shrubs. Grasslands are grass-dominated and can be distinguished as either temperate
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or tropical grasslands. OGFD ecosystems provide anthropogenically important ecosystem services,
such as sand-fixation, soil and water conservation, and provide food for both wild and domesticated
livestock. Threatened in many parts of the world [1,2], they provide habitat for an ecologically and
culturally important suite of species (e.g., wild progenitors of horses and cows) and provide important
economic, cultural and historical values to humans.

Globally, OGFD ecosystems are at risk from a variety of climatic and non-climatic factors [3–5].
Primary productivity of OGFD ecosystems may be changing globally as a consequence of changes
in climatic conditions (temperature and precipitation) and land use patterns (e.g., grazing), as well
as the direct effects of increasing atmospheric CO2 concentrations [6–10]. Previous studies have
documented that increases in temperature enhanced vegetation activity and ecosystem productivity
in the Northern Hemisphere [11]. Studies have also reported that changes in precipitation have a
strong influence on temporal patterns in the biomass of grassland and shrubs [12]. The relationships
between changes in temperature, precipitation and ecosystem productivity or vegetation have mainly
been discussed at regional [11,13] and global scales [12]. In most of these studies, maximum values of
the Normalized Difference Vegetation Index (NDVI) were used as a proxy for vegetation activity or
ecosystem productivity; the maximum NDVI represents the highest vegetation activity or ecosystem
productivity, meaning that this approach provides limited information on the normal status of an
ecosystem [14]. These studies also report vague information on normal trends in productivity changes
in OGFD ecosystems and the climatic drivers of change, even though this information is important
to ensure adaptation to future changes in climate, support for pastoralist livelihoods and ecological
management of global OGFD ecosystems.

The present study aims to use remotely-sensed data to examine global changes in OGFD
ecosystems and to identify the main drivers of these changes. We use the annual maximum and
mean values of the NDVI as proxies for the highest and normal levels of annual productivity within
the Earth’s major OGFD-dominated biomes, respectively. The annual maximum NDVI may be more
sensitive to climate change and human activities [14,15], while the annual mean NDVI indicates
the amount of fodder, which is important for sustaining pastoralist livelihoods and for protecting
biodiversity in global OGFD ecosystems [2]. We use trends in the annual maximum and mean values
of the NDVI to highlight general patterns of change in different OGFD ecosystems. We then examine
the relationship between changes in the NDVI and bioclimatic indices by region to identify the key
climatic drivers in OGFD productivity. An improved understanding of these trends and the bioclimatic
indices that control them will help us adapt to future climate change and move towards optimizing
the management of global OGFD ecosystems.

2. Materials and Methods

2.1. Study Area

Open, Grass- and Forb-Dominated (OGFD) ecosystems span the full range of global mean annual
temperatures from Arctic and alpine tundra to tropical grassland and savanna, but span a relatively
narrow range of mean annual precipitation (10 to 100 cm/year) [16,17]. These ecosystems are among
the largest in the world and contribute to the livelihoods of more than 800 million people [1]. They are
a source of goods and services, such as food and forage, energy and wildlife habitat; they also
provide carbon and water storage and watershed protection for many major river systems [1,2,18].
The moisture regime is generally sufficient to support the dense herbaceous plant growth that is
characteristic of OGFD systems, but insufficient to permit forests to dominate [17]. OGFD ecosystems
are more dependent on temperature and annual precipitation in areas with very cold temperatures than
in warmer areas [17]. Nevertheless, there is concern for these systems because they support the Earth’s
vast range of large grazing mammals, both wild and domestic. The area of global OGFD ecosystems,
including tundra, grasslands and savanna, has been estimated at 3.73 billion ha (37,300,000 km2)
from the land cover classes defined by the International Geosphere-Biosphere Programme (IGBP,
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http://www.igbp.net), which means that such areas cover about 19% of the world’s land area. These
OGFD ecosystems are mainly distributed through the Arctic, southwestern USA, mid-eastern South
America, central Africa, central Eurasia, the Mongolian Plateau, the Qinghai-Tibetan Plateau and
Oceania (Figure 1).

Remote Sens. 2016, 8, 384 3 of 12 

 

about 19% of the world’s land area. These OGFD ecosystems are mainly distributed through the 
Arctic, southwestern USA, mid-eastern South America, central Africa, central Eurasia, the Mongolian 
Plateau, the Qinghai-Tibetan Plateau and Oceania (Figure 1). 

 

Figure 1. Global OGFD ecosystems distribution and regional division map. In this figure: (1) is the 
Arctic; (2) is the southwestern USA; (3) is mid-eastern South America; (4) is central Africa; (5) is central 
Eurasia; (6) is the Mongolian Plateau; (7) is the Qinghai-Tibetan Plateau; and (8) is Oceania. 

2.2. Dataset and Pre-Analysis 

Climatic data: Monthly mean temperature and total precipitation data were obtained from the 
Climatic Research Unit’s (CRU) Time-Series Version 3.21 (TS3.21) high-resolution gridded dataset of 
month-by-month variation in climate (http://badc.nerc.ac.uk), at a resolution of 0.5°. We used these 
data to examine the annual and monthly impacts of climate on the dynamics of OGFD ecosystems’ 
productivity at global and regional scales from 1982 to 2011. 

Remote sensing data: In recent years, changes in regional or global ecosystem productivity have 
been widely documented by remotely-sensed spectral vegetation indices, such as the NDVI. The 
NDVI is an index of vegetation greenness and photosynthetic capacity and is the normalized ratio of 
red to Near-Infrared (NIR) reflectance [19]. It is widely used to detect variability in the productivity 
and phenology of regional and global terrestrial ecosystems [11–13,19]. The most popular continuous 
and long-term source of NDVI data is the Global Inventory Modeling and Mapping Studies (GIMMS) 
NDVI dataset from the National Oceanic and Atmospheric Administration Advanced Very High 
Resolution Radiometer (NOAA AVHRR), which dates back to July 1981. We used the GIMMS NDVI 
third generation monthly dataset from 1982 to 2011, at a resolution of 0.083°, to analyze the actual 
status of global and regional OGFD ecosystem productivity. The GIMMS NDVI data have been 
calibrated and widely used to detect changes in vegetation at regional and global scales in recent 
years. 

Land cover map: We used global land cover data at a resolution of 8 km from the International 
Geosphere-Biosphere Programme (IGBP) [20] (http://www.igbp.net) to derive the global distribution 
map of OGFD ecosystems. 

Bioclimatic indices and data processing: Seven bioclimatic indices, namely the annual total 
precipitation (Pat, mm), precipitation of the wettest month (Pwm, mm), precipitation of the driest 
month (Pdm, mm), annual mean temperature (Tam, °C), mean temperature of the hottest month 
(Thm, °C), mean temperature of the coldest month (Tcm, °C) and the ombrothermic index (Io = Pt/Ts, 
where Pt is the total precipitation of those months whose average temperature is higher than 0 °C 
and Ts is the sum of the monthly average temperature of those months whose average temperature 

Figure 1. Global OGFD ecosystems distribution and regional division map. In this figure: (1) is the
Arctic; (2) is the southwestern USA; (3) is mid-eastern South America; (4) is central Africa; (5) is central
Eurasia; (6) is the Mongolian Plateau; (7) is the Qinghai-Tibetan Plateau; and (8) is Oceania.

2.2. Dataset and Pre-Analysis

Climatic data: Monthly mean temperature and total precipitation data were obtained from the
Climatic Research Unit’s (CRU) Time-Series Version 3.21 (TS3.21) high-resolution gridded dataset of
month-by-month variation in climate (http://badc.nerc.ac.uk), at a resolution of 0.5˝. We used these
data to examine the annual and monthly impacts of climate on the dynamics of OGFD ecosystems’
productivity at global and regional scales from 1982 to 2011.

Remote sensing data: In recent years, changes in regional or global ecosystem productivity have
been widely documented by remotely-sensed spectral vegetation indices, such as the NDVI. The NDVI
is an index of vegetation greenness and photosynthetic capacity and is the normalized ratio of red
to Near-Infrared (NIR) reflectance [19]. It is widely used to detect variability in the productivity and
phenology of regional and global terrestrial ecosystems [11–13,19]. The most popular continuous and
long-term source of NDVI data is the Global Inventory Modeling and Mapping Studies (GIMMS)
NDVI dataset from the National Oceanic and Atmospheric Administration Advanced Very High
Resolution Radiometer (NOAA AVHRR), which dates back to July 1981. We used the GIMMS NDVI
third generation monthly dataset from 1982 to 2011, at a resolution of 0.083˝, to analyze the actual
status of global and regional OGFD ecosystem productivity. The GIMMS NDVI data have been
calibrated and widely used to detect changes in vegetation at regional and global scales in recent years.

Land cover map: We used global land cover data at a resolution of 8 km from the International
Geosphere-Biosphere Programme (IGBP) [20] (http://www.igbp.net) to derive the global distribution
map of OGFD ecosystems.

Bioclimatic indices and data processing: Seven bioclimatic indices, namely the annual total
precipitation (Pat, mm), precipitation of the wettest month (Pwm, mm), precipitation of the driest
month (Pdm, mm), annual mean temperature (Tam, ˝C), mean temperature of the hottest month
(Thm, ˝C), mean temperature of the coldest month (Tcm, ˝C) and the ombrothermic index (Io = Pt/Ts,
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where Pt is the total precipitation of those months whose average temperature is higher than 0 ˝C
and Ts is the sum of the monthly average temperature of those months whose average temperature
is higher than 0 ˝C) [21], were chosen for analysis. These indices were calculated using the monthly
total precipitation and mean temperature data from the CRU TS3.21 for the period 1982 to 2011 for
the different OGFD types and for regions in which the OGFD ecosystems were mainly distributed.
The bioclimatic variables represent the annual climate (e.g., mean annual temperature, annual
precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and
warmest months, precipitation during wet and dry months and ombrothermic index) and, so, provide
biologically-relevant information about ecosystem productivity.

We aggregated the monthly GIMMS NDVI to obtain the annual maximum values of the
NDVI (NDVImax) using a maximum value composite approach and then averaged the monthly
GIMMS NDVI to create the annual mean NDVI (NDVImean) for the period from 1982 to 2011.
We identified three OGFD ecosystem types at the global scale, namely grasslands, savanna and tundra.
The distribution of grasslands and savanna was derived directly from the 17th IGBP classification map.
Grassland in the Arctic Circle (66˝331N) was defined as tundra. We resampled the NDVI and OGFD
distribution map using the nearest-neighbor method at a resolution of 0.5˝, so that it was consistent
with the resolution of the climate data used to determine the climatic predictors of changes in OGFD
ecosystem productivity.

2.3. Data Analysis

General trend: We detected a gradual change in the annual maximum and mean NDVI in OGFD
ecosystems form 1982 to 2011 at the pixel level using a least-squares linear regression model, namely
y = a + bx [22], where a and b are the regression coefficients (a is the intercept and b the slope), y is
the year-by-year annual maximum or annual mean NDVI and x is time. The trends were identified as
being statistically significant (p < 0.05) or highly statistically significant (p < 0.01).

Stepwise multiple regressions: We determined the relationship between the single response
variable (dependent variable) and two or more controlled variables (independent variables) using
multiple linear regression [23]. Stepwise Multiple Regressions (SMR), which combine forward selection
and backward elimination methods, were used to identify climatic factors that controlled productivity
changes in the OGFD ecosystems [23,24]. Since the annual meteorological cycles in the Northern
and Southern Hemisphere are different, we used stepwise multiple regressions to determine the
relationship between the NDVI and bioclimatic indices in all pixels of the OGFD types and major
OGFD ecosystems, aggregated over time for the various types and regions.

3. Results

3.1. Productivity Changes in Global OGFD Ecosystems

We found significant (p < 0.05) and very significant (p < 0.01) increasing trends in the
annual maximum NDVI across 45.8% of the global OGFD area. Significantly- (p < 0.05) and very
significantly- (p < 0.01) decreasing trends in the annual maximum NDVI were observed for only 1.5%
of the area (Table 1). The significant increases in the annual maximum NDVI were mainly distributed
throughout OGFD ecosystems in the Arctic, mid-eastern South America, central Africa, central Eurasia
and Oceania, whereas decreases were observed mainly on the Mongolian Plateau (Figure 2a; Table 2).
Savanna (60.6%) accounted for the highest percentage of the significant increasing trend (p < 0.05 and
p < 0.01) in the annual maximum NDVI, followed by tundra (48.2%) and grassland (38.4%) (Table 1).
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Figure 2. Spatial trends of annual maximum (a) and mean (b) NDVI in global OGFD ecosystems from
1982 to 2011.

Table 1. The area proportion (%) of different change trends in the annual maximum and mean NDVI
of global OGFD ecosystems from 1982 to 2011.

NDVI Trends Tundra Grassland Savannas Global OGFD Ecosystems

Annual
maximum

Very significantly decreased 1.2 0.7 0.2 0.6
Significantly decreased 1.8 0.9 0.5 0.9

Insignificantly decreased 25.9 15.0 9.1 15.0
Insignificantly increased 22.9 45.0 29.6 37.7
Significantly increased 9.0 14.7 10.8 12.8

Very significantly increased 39.2 23.7 49.8 33.0

Annual
mean

Very significantly decreased 1.2 2.2 2.4 2.1
Significantly decreased 1.4 2.8 2.5 2.5

Insignificantly decreased 23.4 24.0 23.6 23.8
Insignificantly increased 30.5 42.8 31.1 37.9
Significantly increased 11.8 10.2 9.4 10.2

Very significantly increased 31.7 18.0 31.0 23.5
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Table 2. The area proportion (%) of different change trends in the annual maximum and mean NDVI
of OGFD ecosystems in different regions from 1982 to 2011.

Regions

Trends Trends in Annual Maximum NDVI Trends in Annual Mean NDVI

Significantly
Decreased

Insignificantly
Changed

Significantly
Increased

Significantly
Decreased

Insignificantly
Changed

Significantly
Increased

Arctic 2.7 39.8 57.5 1.9 51.0 47.1
Southwestern USA 0.5 67.3 32.2 0.4 63.5 36.1

Mid-eastern South America 0.5 30.3 69.2 3.5 58.8 37.7
Central Africa 0.8 43.4 55.8 6.6 62.5 30.9

Central Eurasia 0.3 55.8 43.9 4.9 67.1 28.0
Mongolian Plateau 5.1 87.3 7.6 11.4 79.0 9.6

Qinghai-Tibetan Plateau 0.7 79 20.3 1.0 70.3 28.7
Oceania 1.5 56.1 42.4 2.3 80.7 17.0

Trends in the annual mean NDVI are similar to those of the maximum NDVI in most OGFD
ecosystems, but the increasing and decreasing trends in the annual mean NDVI are stronger and weaker,
respectively, than the corresponding trends in the maximum NDVI (Table 1). Trends were observed
in grassland and savanna ecosystems in mid-eastern South America, central Africa, central Eurasia
and Oceania (Figure 2b and Table 2). In the Arctic region, a smaller area was subjected to significant
decreasing and increasing trends in the annual mean NDVI than in the case of annual maximum NDVI
(Table 2). The decreasing and increasing trends in the annual mean NDVI are weaker and stronger,
respectively, than the corresponding trends in the maximum NDVI for the southwestern USA (Table 2).
The areas on the Mongolian and Qinghai–Tibetan Plateau that experienced significant decreasing and
increasing trends in the annual mean NDVI were larger than the areas with corresponding trends in the
maximum NDVI (Table 2). There was a significant increasing trend in the annual mean NDVI for 43.5%
of the global tundra ecosystem area, which is greater than that for grasslands and savanna (Table 1).

3.2. Climatic Predictors of Changes in the Productivity of Different OGFD Ecosystems

Stepwise multiple regression models based on bioclimatic variables show that the contributions of
climate change to the annual maximum and mean NDVI are different in different OGFD ecosystems
(Table 3). For tundra, Tam is the most important predictors of the annual maximum NDVI, whereas
Tam and Thm are important predictors of changes in the annual mean NDVI. The annual maximum
NDVI in grassland ecosystems is controlled mainly by Pdm, Io and Pat, and the annual mean NDVI is
controlled by Tam, Pdm and Pwm. For savanna, Thm, Pat, Io and Tam are the most important predictors of
the annual maximum NDVI, whereas Pat, Tcm, Pwm and Pdm are strong predictors of the annual mean
NDVI. The coefficients of determination (R2), which are a good measure of predicative performance,
range from 0.415 to 0.547 in different OGFD ecosystems (Table 3). Bioclimatic factors explain 41.5%
(R2 = 0.415) and 54.7% of the variation in the annual maximum NDVI and the variation in annual mean
NDVI in tundra, as well as 50.0% and 51.8% in grasslands and 53.1% and 47.7% in savanna, respectively.

Table 3. Stepwise multiple regression between NDVI and bioclimatic factors of different OGFD
ecosystems from 1982 to 2011. The NDVImax is the annual maximum values of NDVI; NDVImean

is the annual mean values of NDVI; Pat is annual total precipitation (mm); Pwm is the precipitation
of the wettest month (mm); Pdm is the precipitation of the driest month (mm); Tam is annual mean
temperature (˝C); Thm is the mean temperature of the hottest month (˝C); Tcm is the mean temperature
of the coldest month (˝C); and Io is the ombrothermic index.

Grassland Types Stepwise Regression Equations R2 F p

Tundra
NDVImax = 0.484 + 0.644Tam 0.415 F(1,28) = 19.87 <0.0001

NDVImean = 0.131 + 0.655Tam + 0.151Thm 0.547 F(2,27) = 16.30 <0.0000

Grassland
NDVImax = 0.473 + 0.484Pdm ´ 0.545Io + 0.329Pat 0.500 F(3,26) = 8.670 <0.0004

NDVImean = 0.235 + 0.462Tam + 0.325Pdm + 0.304Pwm 0.518 F(3,26) = 9.331 <0.0002

Savannas
NDVImax = 0.435 + 0.243Thm +18.08Pat ´ 18.034Io ´ 3.317Tam 0.531 F(4,25) = 7.077 <0.0006

NDVImean = 0.325 + 0.763Pat + 0.246Tcm ´ 0.237Pwm ´ 0.165Pdm 0.477 F(4,25) = 5.711 <0.0020
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3.3. Climatic Predictors of Changes in OGFD Ecosystems’ Productivity in Different Regions

We found that different climate predictors drove the variability in OGFD ecosystem productivity
in different regions (Table 4 and Table S1). In OGFD ecosystems, Pat was a predictor of positive
changes in the annual maximum NDVI in southwestern USA, central Africa and central Eurasia and a
predictor of negative changes in the annual maximum NDVI in the Arctic. Pwm was a predictor of
positive changes in central Africa, central Eurasia, on the Mongolian Plateau and in Oceania and Pdm a
predictor of negative change in the productivity of OGFD ecosystems in the Arctic, mid-eastern South
America, central Africa and on the Mongolian Plateau. Tam was a predictor of positive changes in
grassland productivity in the Arctic and mid-eastern South America, whereas Thm predicted positive
changes in the Arctic, central Africa and on the Mongolian and Qinghai–Tibetan Plateau, but predicted
negative changes in Oceania. Tcm predicted positive changes in OGFD ecosystem productivity in
the Arctic and negative changes on the Mongolian Plateau. Io predicted positive changes in OGFD
ecosystems productivity in mid-eastern South America and Oceania, but negative changes in the
southwestern USA and central Eurasia.

Table 4. Stepwise multiple regression between NDVI and bioclimatic factors of OGFD ecosystems in
different regions from 1982 to 2011. The NDVImax is the annual maximum values of NDVI; NDVImean

is the annual mean values of NDVI; Pat is annual total precipitation (mm); Pwm is the precipitation
of the wettest month (mm); Pdm is the precipitation of the driest month (mm); Tam is annual mean
temperature (˝C); Thm is the mean temperature of the hottest month (˝C); Tcm is the mean temperature
of the coldest month (˝C); and Io is the ombrothermic index.

Regions Stepwise Regression Equations R2 F p

the Arctic
NDVImax = 0.540 + 0.563Tam ´ 0.231Pat + 0.300Tcm ´ 0.200Pdm + 0.154Thm 0.582 F(5,24) = 6.686 <0.0005

NDVImean = 0.123 + 0.714Tam 0.509 F(1,29) = 29.06 <0.0001

the southwestern
USA

NDVImax = 0.490 + 0.838Pat ´ 0.582Io 0.133 F(2,27) = 2.071 <0.1457

NDVImean = 0.157 + 0.721Tam + 0.489Pwm ´ 0.254Tcm +0.336Pat + 0.283Thm 0.530 F(5,24) = 5.414 <0.0018

mid-eastern
South America

NDVImax = ´0.202 + 0.603Tam + 0.297Io ´ 0.215Pdm 0.346 F(3,26) = 4.576 <0.0011

NDVImean = 0.076 + 0.661 Pat + 0.196 Thm ´ 0.294Pwm + 0.244Tam 0.333 F(4,25) = 3.119 <0.0328

central Africa
NDVImax = 0.119 +0.448Pat + 0.355Thm ´ 0.198Pdm + 0.209 Pwm 0.532 F(4,25) = 7.115 <0.0006

NDVImean = 0.452 + 0.619 Pat + 0.253Pwm ´ 0.141Pdm – 0.135Thm 0.662 F(4,25) = 12.26 <0.0000

central Eurasia
NDVImax = 0.329 + 0.875Pat + 0.351Pwm ´ 0.596Io 0.436 F(3,26) = 6.701 <0.0017

NDVImean = 0.229 + 0.275Pwm+ 0.247Pat 0.188 F(2,27) = 3.133 <0.0598

the Mongolian
Plateau

NDVImax = 0.353 + 0.5748Pwm ´ 0.394Tcm ´ 0.302Pdm + 0.232Thm 0.552 F(4,25) = 7.695 <0.0004

NDVImean = 0.184 + 0.700Pwm + 0.468Thm ´ 0.285Pdm ´ 0.229Tcm 0.555 F(4,25) = 7.797 <0.0003

the Qinghai-
Tibetan Plateau

NDVImax = 0.368 + 0.427Thm 0.182 F(1,28) = 6.246 <0.0186

NDVImean = 0.241 + 0.718Tam – 0.286Pat + 0.258Thm ´ 0.189Tcm 0.536 F(4,25) = 7.210 <0.0005

Oceania
NDVImax = 0.795 + 0.409Io ´ 0.263Thm + 0.225Pwm 0.584 F(3,26) = 12.16 <0.0000

NDVImean = 0.851 + 0.429Io ´ 0.532Tam + 0.345Tcm 0.584 F(3,26) = 12.17 <0.0000

Pat had a positive impact on the annual mean NDVI in OGFD ecosystems in southwestern
USA, mid-eastern South America, central Africa and central Eurasia and a negative impact on the
Qinghai–Tibetan Plateau. Pwm had a positive impact on the annual mean NDVI in southwestern USA,
central Africa, central Eurasia and on the Mongolian Plateau and a negative impact in mid-eastern
South America. Pdm was identified as a negative predictor for central Africa and on the Mongolian
Plateau. Tam was identified as a positive predictor for the Arctic, the southwestern USA, mid-eastern
South America and on the Qinghai-Tibetan Plateau and a negative predictor in Oceania. Thm had
a positive impact in southwestern USA, mid-eastern South America and on the Mongolian and
Qinghai-Tibetan Plateaus and a negative impact in central Africa. Tcm was a positive predictor in
Oceania and a negative predictor in the southwestern USA and on the Mongolian Plateau. Io was
confirmed as a positive predictor in Oceania.
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4. Discussion

Results from least-squares linear regression analysis show that changes in the NDVI were not
significant for most (>50%) global OGFD ecosystems and that there were increasing trends in both
the annual maximum NDVI and annual mean NDVI from 1982 to 2011 for 34% and 46% of OGFD
ecosystems, respectively (Table 1). The trends in the annual maximum NDVI show greater increases
and smaller decreases than the trends in the annual mean NDVI in global OGFD ecosystems (Figure 2;
Table 1). Most previous studies have reported changes in ecosystem productivity based on the
maximum NDVI [14]. The annual maximum NDVI appears to be less stable than the annual mean
NDVI in OGFD ecosystems (Table 1; Figure S1). The annual average NDVI indicates the normal
productivity status of an ecosystem, so information about changes in this index should be useful
because of its importance for grazing production and other ecosystem services [2]. Furthermore, the
bioclimatic predictors of the maximum and mean NDVI in OGFD ecosystems are inconsistent (Table 3;
Table S1).

The area showing an increasing trend in the mean NDVI (61% of OGFD ecosystems globally)
is larger than the area with an increasing trend in the maximum NDVI (40%). Savanna, grasslands
and tundra account for about 21%, 10% and 5% of the change in the maximum NDVI, respectively
(Table 1). Normal productivity in savanna and grasslands ecosystems is subjected to greater influence
from other factors, such as human activity, wild and domestic herbivores and fire, than are tundra
ecosystem [1,2,25–27]. There were significant increasing trends in productivity in OGFD systems (both
maximum and mean NDVI values) in the Arctic, mid-eastern South America, central Africa, central
Eurasia and Oceania and significant decreasing trends in systems on the Mongolian Plateau (Figure 2;
Table 2). Our results confirm the findings of previous studies; i.e., that, depending on the region,
vegetation activity and ecosystem productivity have not changed or increased in recent years [11,19].

Most of the changes in productivity in OGFD ecosystems were correlated with bioclimatic
indices (Table 3; Table S1). The coefficients of determination between the NDVI and bioclimatic
factors range from 0.415 to 0.547, and bioclimatic factors explain 41.5% to 54.7% of the variation
in the productivity in various OGFD ecosystems (Table 3). OGFD ecosystem productivity in the
Arctic and in parts of mid-eastern South America benefited from increases in temperature, whereas
productivity in Oceania and central Africa decreased as temperature increased from 1982 to 2011
(Table 4 and Table S1). Our results suggest that increasing temperatures have a positive impact
on vegetation activity and biomass in cold regions [8,9,11,28–30] and a negative impact in warm
regions [9]. Therefore, increasing temperatures tend to improve and diminish productivity in colder
OGFD and warmer OGFD ecosystems, respectively.

In grassland and savanna, precipitation was the main driver of changes in the annual maximum
and mean NDVI from 1982 to 2011 (Table 3; Table S1), which agrees with previous reports of
a positive correlation between rainfall and productivity in water-limited ecosystems [7,12,31–33].
Productivity in the Arctic tundra responded negatively to variations in precipitation (Table 3; Table S1).
While it is well known that the rate of temperature increase is rising over time and has greater
consequences in the Arctic than in other regions [9], the impact of increases in precipitation cannot be
ignored [34]. The recently-reported weakening in the influence of warming on vegetation activity in
the Northern Hemisphere [11] may be related to the negative impacts of increased precipitation on
tundra productivity in the Arctic.

The bioclimatic indices that controlled the NDVI varied between regions (Table 4 and Table S1).
Bioclimatic predictors explain 13.3% of the variability in the annual maximum NDVI in the
southwestern USA and 18.8% of the variability in the annual mean NDVI in central Eurasia, but these
correlations are not significant (p > 0.05) (Table 4). Therefore, the variability in the annual maximum
NDVI in the southwestern USA and in the annual mean NDVI in central Eurasia can be attributed
mainly to non-climatic factors, such as improved management and fires [27]. The productivity of
OGFD ecosystems on the Mongolian Plateau showed a decreasing trend (Figure 2; Table 1). The reasons
for this decline are debated, but recent research suggests that it is attributable to overgrazing [26].
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Climate predictors explain 55.2% and 55.5% of the variability in the annual maximum and mean NDVI,
respectively, on the Mongolian Plateau from 1982 to 2011. Thus, our results suggest that the observed
decline in the productivity of OGFD ecosystems on the Mongolian Plateau is attributable mainly to
increases in drought and temperature in recent years.

In this contribution, we have documented changing patterns in the productivity of global OGFD
ecosystems and the relationships with bioclimatic factors, from our analysis of long-term NDVI and
climatic data. However, some uncertainties remain, such as those in the NDVI [14,19,22,35], gridded
CRU data and land use data [20]. For example, the annual maximum NDVI values are sensitive to
false highs and noise correction [14], while the annual mean values of NDVI were affected by the
non-growing season NDVI (e.g., too low a value of NDVI) to cause the possible error. The NDVI for one
savannas region is increasing as a result of woody encroachment [5,36]. At 0.5˝, the spatial resolution
of the gridded CRU data is coarse. There is some uncertainty regarding the mixed type classes of IGBP
global land cover data [20,37], and spatial variability also has an influence on the results of stepwise
multiple regression analysis for the OGFD regions or ecosystems. Over a period of 30 years, large
areas of global OGFD ecosystems may have changed to other land cover types. Seasonal phenology
also has an important effect on the primary productivity of terrestrial ecosystem [38]. Future studies
should use data from long-term controlled experiments and multi-model ensembles to examine these
uncertainties and the mechanisms that control the relative contributions of climate change to variations
in the productivity of global OGFD ecosystems.

5. Conclusions

(1) From 1982 to 2011, there were significant changes in the annual maximum NDVI for 47.3% of
OGFD ecosystems worldwide, with 45.8% experiencing an increase and 1.5% a decrease. There were
significant changes in the annual mean NDVI for 38.3% of OGFD ecosystems over the same period,
with increases in 33.7% and decreases in 4.6%.

(2) The annual maximum and mean NDVI values of OGFD ecosystems showed significant
increasing trends throughout the Arctic, mid-eastern South America, central Africa, central Eurasia
and Oceania and decreasing trends on the Mongolian Plateau.

(3) More than 50% of Arctic tundra and 33% of South American savanna have benefited from
increasing temperature, while more than 50% of OGFD ecosystems in Oceania experienced negative
impacts from warming during 1982 to 2011.

(4) Precipitation was positively correlated with the productivity change in grassland and savannas,
but was negatively correlated with productivity in the Arctic tundra from 1982 to 2011.

(5) Variability in the maximum and mean productivities is related to different climatic predictors
in different regions and different OGFD ecosystems types. Bioclimatic indices explain between 42%
and 55% of the changes in productivity of global OGFD ecosystems.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/5/384/s1,
Figure S1: Trends of standardized anomalies of annual maximum and mean NDVI in the main distribution
regions of global OGFD ecosystem; Table S1: Significant correlation between NDVI and bioclimatic factors in
different OGFD ecosystem types and different regions from 1982 to 2011.

Acknowledgments: The authors gratefully acknowledge financial support from the National Key Project of
Scientific and Technical Supporting Program of China (2013BAC09B03), the National Natural Science Foundation
of China (31570484, 31170460) and a cooperative project with the Nagqu Grassland Station and the Institute of
Agricultural Environment and Sustainable Development in agriculture. We also thanks GLCF (Global Land Cover
Facility, University of Maryland) for providing the GIMMS NDVI data, CRU (Climatic Research Unit, University
of East Anglia) for sponsoring the meteorological data and IGBP (International Geosphere-Biosphere Programme)
for providing the global land cover data.

Author Contributions: Qingzhu Gao and Mark W. Schwartz designed the study. Wenquan Zhu analyzed the
remote sensing data. Qingzhu Gao, Mark W. Schwartz and Yue Li wrote the main manuscript text. Yunfan Wan,
Xiaobo Qin, Xin Ma and Shuo Liu analyzed the results. Matthew A. Williamson and Casey B. Peters proposed
useful suggestions on the manuscript. All authors reviewed the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2016, 8, 384 10 of 12

Abbreviations

The following abbreviations are used in this manuscript:

OGFD Open, Grass- and Forb-Dominated ecosystems
NDVI Normalized Difference Vegetation Index
IGBP International Geosphere-Biosphere Programme
CRU Climatic Research Unit
TS3.21 Time-Series Version 3.21
NIR Near-Infrared Reflectance
GIMMS Global Inventory Modeling and Mapping Studies
NOAA National Oceanic and Atmospheric Administration
AVHRR Advanced Very High Resolution Radiometer
Pat Annual Total Precipitation (mm)
Pwm Precipitation of Wettest Month (mm)
Pdm Precipitation of Driest Month (mm)
Tam Annual Mean Temperature (˝C)
Thm Mean Temperature of Hottest Month (˝C)
Tcm Mean Temperature of Coldest Month (˝C)

Io

Ombrothermic Index (Io = Pt/Ts, Pt is the total precipitation of those months whose
average temperature is higher than 0 ˝C, and Ts is the sum of the monthly average
temperature of those months whose average temperature is higher than 0 ˝C)
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