Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Speech-related dorsal motor cortex activity does not interfere with iBCI cursor control.

Abstract

Objective

Speech-related neural modulation was recently reported in 'arm/hand' area of human dorsal motor cortex that is used as a signal source for intracortical brain-computer interfaces (iBCIs). This raises the concern that speech-related modulation might deleteriously affect the decoding of arm movement intentions, for instance by affecting velocity command outputs. This study sought to clarify whether or not speaking would interfere with ongoing iBCI use.

Approach

A participant in the BrainGate2 iBCI clinical trial used an iBCI to control a computer cursor; spoke short words in a stand-alone speech task; and spoke short words during ongoing iBCI use. We examined neural activity in all three behaviors and compared iBCI performance with and without concurrent speech.

Main results

Dorsal motor cortex firing rates modulated strongly during stand-alone speech, but this activity was largely attenuated when speaking occurred during iBCI cursor control using attempted arm movements. 'Decoder-potent' projections of the attenuated speech-related neural activity were small, explaining why cursor task performance was similar between iBCI use with and without concurrent speaking.

Significance

These findings indicate that speaking does not directly interfere with iBCIs that decode attempted arm movements. This suggests that patients who are able to speak will be able to use motor cortical-driven computer interfaces or prostheses without needing to forgo speaking while using these devices.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View