Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Mechanical behavior of copper containing a gas-bubble superlattice

Published Web Location

https://doi.org/10.1016/j.actamat.2016.08.085
No data is associated with this publication.
Abstract

Helium implantation can cause the formation of a helium gas-bubble superlattice in crystalline materials. Experimental studies of the mechanical response of a material hosting such a superlattice are lacking, especially at the microstructural level. By employing a novel, high-throughput, high-precision nanoscale helium implantation technique, in combination with in-situ transmission electron microscopy nanomechanical testing, we find that the helium-bubble superlattice structure in copper is disordered or maintained depending on whether the material's plasticity occurs by multiple ordinary full dislocations or by deformation twinning. In addition, helium implantation can harden the material significantly: the higher the dose, the larger the yield stress. The measured hardening behavior agrees well with the trend predicted by the Friedel-Kroupa-Hirsch model. Our findings shed new light on understanding the mechanical and microstructural properties of materials subjected to intense helium generation by neutron and alpha-particle bombardment in nuclear fusion, fission or spallation systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item