Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

G protein control of potassium channel activity in a mast cell line.

Abstract

Using the patch-clamp technique, we studied regulation of potassium channels by G protein activators in the histamine-secreting rat basophilic leukemia (RBL-2H3) cell line. These cells normally express inward rectifier K+ channels, with a macroscopic whole-cell conductance in normal Ringer ranging from 1 to 16 nS/cell. This conductance is stabilized by including ATP or GTP in the pipette solution. Intracellular dialysis with any of three different activators of G proteins (GTP gamma S, GppNHp, or AlF-4) completely inhibited the inward rectifier K+ conductance with a half-time for decline averaging approximately 300 s after "break-in" to achieve whole-cell recording. In addition, with a half-time averaging approximately 200 s, G protein activators induced the appearance of a novel time-independent outwardly rectifying K+ conductance, which reached a maximum of 1-14 nS. The induced K+ channels are distinct from inward rectifier channels, having a smaller single-channel conductance of approximately 8 pS in symmetrical 160 mM K+, and being more sensitive to block by quinidine, but less sensitive to block by Ba2+. The induced K+ channels were also highly permeable to Rb+ but not to Na+ or Cs+. The current was not activated by the second messengers Ca2+, inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, or by cyclic AMP-dependent phosphorylation. Pretreatment of cells with pertussis toxin (0.1 microgram/ml for 12-13 h) prevented this current's induction both by guanine nucleotides and aluminum fluoride, but had no effect on the decrease in inward rectifier conductance. Since GTP gamma S is known to stimulate secretion from patch-clamped rat peritoneal mast cells, it is conceivable that K+ channels become inserted into the plasma membrane from secretory granules. However, total membrane capacitance remained nearly constant during appearance of the K+ channels, suggesting that secretion induced by GTP gamma S was minimal. Furthermore, pertussis toxin had no effect on secretion triggered by antigen, and triggering of secretion before electrical recording failed to induce the outward K+ current. Finally, GTP gamma S activated the K+ channel in excised inside-out patches of membrane. We conclude that two different GTP-binding proteins differentially regulate two subsets of K+ channels, causing the inward rectifier to close and a novel K+ channel to open when activated.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View