Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope

Abstract

Raster image correlation spectroscopy (RICS) is a new and novel technique for measuring molecular dynamics and concentrations from fluorescence confocal images. The RICS technique extracts information about molecular dynamics and concentrations from images of living cells taken on commercial confocal systems. Here we develop guidelines for performing the RICS analysis on an analogue commercial laser scanning confocal microscope. Guidelines for typical instrument settings, image acquisition settings and analogue detector characterization are presented. Using appropriate instrument/acquisition parameters, diffusion coefficients and concentrations can be determined, even for highly dynamic dye molecules in solution. Standard curves presented herein demonstrate the ability to detect protein concentrations as low as approximately 2 nM. Additionally, cellular measurements give accurate values for the diffusion of paxillin-enhanced-green fluorescent protein (EGFP), an adhesion adaptor molecule, in the cytosol of the cell and also show slower paxillin dynamics near adhesions where paxillin interacts with immobile adhesion components. Methods are presented to account for bright immobile structures within the cell that dominate spatial correlation functions; allowing the extraction of fast protein dynamics within and near these structures. A running average algorithm is also presented to address slow cellular movement or movement of cellular features such as adhesions. Finally, methods to determine protein concentration in the presence of immobile structures within the cell are presented. A table is presented giving guidelines for instrument and imaging setting when performing RICS on the Olympus FV300 confocal and these guidelines are a starting point for performing the analysis on other commercial confocal systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View