Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Machine learning model to predict obesity using gut metabolite and brain microstructure data

Abstract

A growing body of preclinical and clinical literature suggests that brain-gut-microbiota interactions may contribute to obesity pathogenesis. In this study, we use a machine learning approach to leverage the enormous amount of microstructural neuroimaging and fecal metabolomic data to better understand key drivers of the obese compared to overweight phenotype. Our findings reveal that although gut-derived factors play a role in this distinction, it is primarily brain-directed changes that differentiate obese from overweight individuals. Of the key gut metabolites that emerged from our model, many are likely at least in part derived or influenced by the gut-microbiota, including some amino-acid derivatives. Remarkably, key regions outside of the central nervous system extended reward network emerged as important differentiators, suggesting a role for previously unexplored neural pathways in the pathogenesis of obesity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View