Skip to main content
eScholarship
Open Access Publications from the University of California

Thermally superactive artificial kagome spin ice structures obtained with the interfacial Dzyaloshinskii-Moriya interaction

Abstract

Artificial kagome spin ice exhibits exotic magnetic correlations driven by a combination of geometric frustration and dipolar interactions that, at low-enough temperature, can result in ordered phases. This order, whether it is the ground state of several kagome rings, or the theoretically predicted long-range order of an extended array, has yet to be experimentally observed. By introducing an interfacial Dzyaloshinskii-Moriya interaction, we are able to reduce the blocking temperature of the individual nanomagnets, allowing a system of 30 kagome nanomagnets to explore its vast manifold of microstates and find its ground state. Furthermore, the extracted magnetic correlations in an extended artificial kagome spin ice are found to exhibit quantitative signatures of long-range charge order, providing evidence of the theoretically predicted continuous phase transition to the charge-ordered state. The significant lowering of the blocking temperature in nanomagnets is important for the exploitation of superparamagnetism in artificial spin systems and devices.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View