Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Tracer applications of noble gas radionuclides in the geosciences

Abstract

Noble gas radionuclides, including 81Kr (t1/2=229,000years), 85Kr (t1/2=10.8years), and 39Ar (t1/2=269years), possess nearly ideal chemical and physical properties for studies of earth and environmental processes. Recent advances in Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, have enabled routine measurements of the radiokrypton isotopes, as well as the demonstration of the ability to measure 39Ar in environmental samples. Here we provide an overview of the ATTA technique, and a survey of recent progress made in several laboratories worldwide. We review the application of noble gas radionuclides in the geosciences and discuss how ATTA can help advance these fields, specifically: determination of groundwater residence times using 81Kr, 85Kr, and 39Ar; dating old glacial ice using 81Kr; and an 39Ar survey of the main water masses of the oceans, to study circulation pathways and estimate mean residence times. Other scientific questions involving a deeper circulation of fluids in the Earth's crust and mantle are also within the scope of future applications. We conclude that the geoscience community would greatly benefit from an ATTA facility dedicated to this field, with instrumentation for routine measurements, as well as for research on further development of ATTA methods.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View