Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Self-turbulization in cellularly unstable laminar flames

Abstract

It has been suggested that a cellularly unstable laminar flame, which is freely propagating in unbounded space, can accelerate and evolve into a turbulent flame with the neighbouring flow exhibiting the basic characteristics of turbulence. Famously known as self-turbulization, this conceptual transition in the flow regime, which arises from local interactions between the propagating wrinkled flamefront and the flow, is critical in extreme events such as the deflagration-to-detonation transition (DDT) leading to supernova explosions. Recognizing that such a transition in the flow regime has not been conclusively demonstrated through experiments, in this work, we present experimental measurements of flow characteristics of flame-generated 'turbulence' for expanding cellular laminar flames. The energy spectra of such 'turbulence' at different stages of cellular instability are analysed. A subsequent scaling analysis points out that the observed energy spectra are driven by the fractal topology of the cellularly unstable flamefront.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item