Skip to main content
eScholarship
Open Access Publications from the University of California

Integrated Sustainability Analysis of Atomic Layer Deposition for Microelectronics Manufacturing

Abstract

Atomic layer deposition (ALD) is a promising nanotechnology for wide applications in microelectronics manufacturing due to its ability to control layer growth at atomic scale. Sustainability of ALD technology needs to be quantitatively investigated in this early development stage to improve its economic and environmental performance. In this paper, we present an integrated sustainability analysis of ALD technology through material and energy flow analyses. The study is performed on the ALD of Al2O3 high- dielectric film through trimethylaluminum and water binary reactions. The precursor utilizations, methane emissions, and nanowaste generations from the ALD process are all quantitatively studied. Energy flow analysis demonstrates that the ALD process energy consumption is mainly determined by the ALD cycle time rather than the process temperature. Scale-up performance of the ALD technology is also studied for both emission generations and energy consumptions. Strategies and methods for improving the sustainability performance of the ALD technology are suggested based on the analysis.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View