Skip to main content
eScholarship
Open Access Publications from the University of California

Side-by-side laboratory comparison of radiant and all-air cooling: How natural ventilation cooling and heat gain characteristics impact space heat extraction rates and daily thermal energy use

Abstract

For radiant cooling to maintain equivalent comfort conditions as all-air cooling it must remove more heat from a space, the peak space heat extraction rate must be larger, and the peak must occur earlier. In this article, we assess how the magnitudes of these differences are influenced by heat gain characteristics and by the use of natural ventilation night precooling. We present measurements from a series of multi-day side-by-side comparisons of radiant cooling and all-air cooling in a pair of experimental testbed buildings, with equal heat gains, and maintained at equivalent comfort conditions. In a five-day experiment with mixed internal heat gains, solar gains, and natural ventilation night precooling, radiant cooling had to remove 35% more heat than the all-air system in equivalent circumstances; and the peak heat extraction rate was 20% larger (median difference on multiple days). In a similar experiment with highly convective internal gains the differences were smaller (26% more thermal energy, 12% larger peak), while in an experiment with highly radiant gains the differences were larger (40% more thermal energy, and 21% larger peak). The differences were much smaller in an experiment without natural ventilation night precooling (7% more thermal energy, 5% larger peak). These findings have consequences for the choice, design, and control of mechanical cooling systems, especially in buildings that also use passive cooling strategies such as natural ventilation night precooling.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View