Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

The arithmetic Hodge-index theorem and rigidity of algebraic dynamical systems over function fields

Abstract

In one of the fundamental results of Arakelov’s arithmetic intersection theory, Faltings and Hriljac (independently) proved the Hodge-index theorem for arithmetic surfaces by relating the intersection pairing to the negative of the Neron-Tate height pairing. More recently, Moriwaki and Yuan–Zhang generalized this to higher dimension. In this work, we extend these results to projective varieties over transcendence degree one function fields. The new challenge is dealing with non-constant but numerically trivial line bundles coming from the constant field via Chow’s K/k-image functor.

As an application of the Hodge-index theorem to heights defined by intersections of adelic metrized line bundles, we also prove a rigidity theorem for the set height zero points of polarized algebraic dynamical systems over function fields. In the special case of a global field, this gives a rigidity theorem for preperiodic points, generalizing previous work of Mimar, Baker–DeMarco, and Yuan–Zhang.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View