Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Prostaglandins and duodenal chemosensing

Published Web Location

https://doi.org/10.1111/jgh.12731
Abstract

Acid-sensing pathways, which trigger mucosal defense mechanisms in response to luminal acid, involve the rapid afferent-mediated "capsaicin pathway" and the sustained "prostaglandin (PG) pathway." Luminal acid quickly increases protective PG synthesis and release from epithelia, although the mechanism by which luminal acid induces PG synthesis is still mostly unknown. Acid exposure augments purinergic ATP-P2Y signaling by inhibition of intestinal alkaline phosphatase activity. Since P2Y activation increases intracellular Ca2+, we further hypothesized that ATP-P2Y signals increase the generation of H2O2 derived from dual oxidase, a member of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family activated by Ca2+. Our recent studies suggest that acid exposure increases H2O2 output, followed by phospholipase A2 and cyclooxygenase activation, increasing PG synthesis. Released prostaglandin E2 augments protective HCO3- and mucus secretion via EP4 receptor activation. Thus, the PG pathway as a component of duodenal acid sensing consists of acid-related intestinal alkaline phosphatase inhibition, ATP-P2Y signals, dual oxidase 2-derived H2O2 production, phospholipase A2 activation, prostaglandin E2 synthesis, and EP4 receptor activation. The PG pathway is also involved in luminal bacterial sensing in the duodenum via activation of pattern recognition receptors, including Toll-like receptors and nucleotide-binding oligomerization domain 2. The presence of acute mucosal responses to luminal bacteria suggests that the duodenum is important for host defenses and may reduce bacterial loading to the hindgut using H2O2, complementing gastric acidity and anti-bacterial bile acids.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View