Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low‐dimensional space of brain dynamics

Published Web Location

https://doi.org/10.1002/hbm.25561
Abstract

Large-scale brain dynamics are believed to lie in a latent, low-dimensional space. Typically, the embeddings of brain scans are derived independently from different cognitive tasks or resting-state data, ignoring a potentially large-and shared-portion of this space. Here, we establish that a shared, robust, and interpretable low-dimensional space of brain dynamics can be recovered from a rich repertoire of task-based functional magnetic resonance imaging (fMRI) data. This occurs when relying on nonlinear approaches as opposed to traditional linear methods. The embedding maintains proper temporal progression of the tasks, revealing brain states and the dynamics of network integration. We demonstrate that resting-state data embeds fully onto the same task embedding, indicating similar brain states are present in both task and resting-state data. Our findings suggest analysis of fMRI data from multiple cognitive tasks in a low-dimensional space is possible and desirable.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View