Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Large‐scale restoration increases carbon stability under projected climate and wildfire regimes

Published Web Location

https://doi.org/10.1002/fee.1791
Abstract

Changing climate and increasing area burned pose a challenge to forest carbon (C) storage, which is compounded by an elevated risk of high‐severity wildfire due to long‐term fire suppression in the westernUS. Restoration treatments that reduce tree density and reintroduce surface fire are effective at moderating fire effects and may help build adaptive capacity to changing environmental conditions. However, treatment implementation has been slow and spatially limited relative to the extent of the area affected by fire suppression. Using model simulations, we quantified how large‐scale restoration treatments in frequent‐fire forest types would influence C outcomes in the Sierra Nevada mountain range under projected climate–wildfire interactions. Our results indicate that large‐scale restoration treatments are an effective means of reducing fire hazard and increasing C storage and stability under future climate and wildfire conditions. The effects of implementation timing suggest that accelerated implementation of large‐scale restoration treatments may confer greater C‐storage benefits, supporting California's efforts to combat climate change.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View