Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer

Abstract

We tested cis-ApcΔ716/Smad4+/- and cis-ApcΔ716/Smad4+/-KrasG12D mice, which recapitulate key genetic abnormalities accumulating during colorectal cancer (CRC) tumorigenesis in humans, for responsiveness to anti-VEGF therapy. We found that even tumors in cis-ApcΔ716/Smad4+/-KrasG12D mice, although highly aggressive, were suppressed by anti-VEGF treatment. We tested the hypothesis that inflammation, a major risk factor and trigger for CRC, may affect responsiveness to anti-VEGF. Chemically induced colitis (CIC) in cis-ApcΔ716/Smad4+/- and cis-ApcΔ716/Smad4+/-KrasG12D mice promoted development of colon tumors that were largely resistant to anti-VEGF treatment. The myeloid growth factor G-CSF was markedly increased in the serum after induction of colitis. Antibodies blocking G-CSF, or its target Bv8/PROK2, suppressed tumor progression and myeloid cell infiltration when combined with anti-VEGF in CIC-associated CRC and in anti-VEGF-resistant CRC liver metastasis models. In a series of CRC specimens, tumor-infiltrating neutrophils strongly expressed Bv8/PROK2. CRC patients had significantly higher plasma Bv8/PROK2 levels than healthy volunteers and high plasma Bv8/PROK2 levels were inversely correlated with overall survival. Our findings establish Bv8/PROK2 as a translational target in CRC, in combination with anti-VEGF agents.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View