Skip to main content
eScholarship
Open Access Publications from the University of California

Task Allocation for Event-Aware Spatiotemporal Sampling of Environmental Variables

Abstract

Monitoring of environmental phenomena with embedded networked sensing confronts the challenges of both unpredictable variability in the spatial distribution of phenomena, coupled with demands for a high spatial sampling rate in three dimensions. For example, low distortion mapping of critical solar radiation properties in forest environments may require two-dimensional spatial sampling rates of greater than 10 samples=m2 over transects exceeding 1000 m2. Clearly, adequate sampling coverage of such a transect requires an impractically large number of sensing nodes. A new approach, Networked Infomechanical System (NIMS), has been introduced to combine autonomous-articulated and static sensor nodes enabling sufficient spatiotemporal sampling density over large transects to meet a general set of environmental mapping demands.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View