- Main
A closer look at turbulence spreading: How bistability admits intermittent, propagating turbulence fronts
Published Web Location
https://doi.org/10.1063/1.5138129Abstract
In magnetic fusion plasmas, mounting evidence suggests the possibility of sustained turbulence below the linear stability threshold or more generally global turbulence bistability. The usual reduced models for turbulence spreading are unistable/supercritical and incompatible with this result. The older models also cannot realistically support fronts connecting laminar and turbulent domains. In this work, a minimal model for “subcritical” turbulence spreading is introduced and analyzed. The model may be viewed as phenomenological or derived directly by considering the effect of profile corrugations in an E × B staircase. The model, which is related to the FitzHugh–Nagumo system, supports the robust coexistence of multiple turbulence levels via bistability. We show that this model predicts stronger penetration of turbulence into a linearly stable region as well as the formation of intermittent turbulence fronts that resemble avalanches. We derive the critical size that a localized slug of turbulence must exceed in order to spread. Finally, we make a prediction of global hysteretic behavior associated with the bistability, which should be testable via experiment.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-