Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Performing radiosynthesis in microvolumes to maximize molar activity of tracers for positron emission tomography

Abstract

Positron emission tomography (PET) is a molecular diagnostic imaging technology to quantitatively visualize biological processes in vivo. For many applications, including imaging of low tissue density targets (e.g. neuroreceptors), imaging in small animals, and evaluation of novel tracers, the injected PET tracer must be produced with high molar activity to ensure low occupancy of biological targets and avoid pharmacologic effects. Additionally, high molar activity is essential for tracers with lengthy syntheses or tracers transported to distant imaging sites. We show that radiosynthesis of PET tracers in microliter volumes instead of conventional milliliter volumes results in substantially increased molar activity, and we identify the most relevant variables affecting this parameter. Furthermore, using the PET tracer [18F]fallypride, we illustrate that molar activity can have a significant impact on biodistribution. With full automation, microdroplet platforms could provide a means for radiochemists to routinely, conveniently, and safely produce PET tracers with high molar activity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View