- Main
The kinases PIG-1 and PAR-1 act in redundant pathways to regulate asymmetric division in the EMS blastomere of C. elegans
Published Web Location
https://doi.org/10.1016/j.ydbio.2018.08.016Abstract
The PAR-1 kinase of C. elegans is localized to the posterior of the one-cell embryo and its mutations affect asymmetric spindle placement and partitioning of cytoplasmic components in the first cell cycle. However, par-1 mutations do not cause failure to restrict the anterior PAR polarity complex to the same extent as mutations in the posteriorly localized PAR-2 protein. Further, it has been difficult to examine the role of PAR-1 in subsequent divisions due to the early defects in par-1 mutant embryos. Here we show that the PIG-1 kinase acts redundantly with PAR-1 to restrict the anterior PAR-3 protein for normal polarity in the one-cell embryo. By using a temperature sensitive allele of par-1, which exhibits enhanced lethality when combined with a pig-1 mutation, we have further explored roles for these genes in subsequent divisions. We find that both PIG-1 and PAR-1 regulate spindle orientation in the EMS blastomere of the four-cell stage embryo to ensure that it undergoes an asymmetric division. In this cell, PIG-1 and PAR-1 act in parallel pathways for spindle positioning, PIG-1 in the MES-1/SRC-1 pathway and PAR-1 in the Wnt pathway.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-