Skip to main content
eScholarship
Open Access Publications from the University of California

The therapeutic potential of small-conductance KCa2 channels in neurodegenerative and psychiatric diseases.

  • Author(s): Lam, Jenny
  • Coleman, Nichole
  • Garing, April Lourdes A
  • Wulff, Heike
  • et al.
Abstract

KCa2 or small-conductance Ca(2+)-activated K(+) channels (SK) are expressed in many areas of the central nervous system where they participate in the regulation of neuronal afterhyperpolarization and excitability, and also serve as negative feedback regulators on the glutamate-NMDA pathway.This review focuses on the role of KCa2 channels in learning and memory and their potential as therapeutic targets for Alzheimer's and Parkinson's disease, ataxia, schizophrenia and alcohol dependence.There currently exists relatively solid evidence supporting the use of KCa2 activators for ataxia. Genetic KCa2 channel suppression in deep cerebellar neurons induces ataxia, while KCa2 activators like 1-EBIO, SKA-31 and NS13001 improve motor deficits in mouse models of episodic ataxia (EA) and spinal cerebellar ataxia (SCA). Use of KCa2 activators for ataxia is further supported by a report that riluzole improves ataxia in a small clinical trial. Based on accumulating literature evidence, KCa2 activators further appear attractive for the treatment of alcohol dependence and withdrawal. Regarding Alzheimer's disease, Parkinson's disease and schizophrenia, further research, including long-term studies in disease relevant animal models, will be needed to determine whether KCa2 channels constitute valid targets and whether activators or inhibitors would be needed to positively affect disease outcomes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View