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Abstract of the Dissertation

Variational Methods in Signal Decomposition and

Image Processing

by

Konstantin Vitalyevich Dragomiretskiy

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Andrea Bertozzi, Chair

The work presented in this dissertation is motivated by classical problems in signal and

image processing from the perspective of variational and PDE-based methods. Analytically

encoding qualitative features of signals into variational energies in conjunction with modern

methods in sparse optimization allows for well-founded and robust models, the optimization

of which yields meaningful and cohesive signal decomposition.

Part I of this dissertation is based on joint work Variational Mode Decomposition [DZ14]

with Dominique Zosso, in which the goal is to recursively decompose a signal into different

modes of separate spectral bands, which are unknown beforehand. In the late nineties,

Huang [HSL98] introduced the Hilbert-Huang transform, also known as Empirical Mode

Decomposition, in order to decompose a signal into so-called intrinsic mode functions (IMF)

along with a trend, and obtain instantaneous frequency data. The HHT/EMD algorithm

is widely used today, although there is no exact mathematical model corresponding to this

algorithm, and, consequently, the exact properties and limits are widely unknown. We

propose an entirely non-recursive variational mode decomposition model, where the modes

are extracted concurrently. The model looks for a number of modes and their respective

center frequencies, such that the modes reproduce the input signal, while being smooth

after demodulation into baseband. In Fourier domain, this corresponds to a narrow-band
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prior. Our model provides a solution to the decomposition problem that is theoretically

well-founded, tractable, and motivated. The variational model is efficiently optimized using

an alternating direction method of multipliers approach. Preliminary results show excellent

performance with respect to existing mode decomposition models.

Part II of this dissertation is the n-dimensional extension of the Variational Mode Decom-

position. Decomposing multidimensional signals, such as images, into spatially compact,

potentially overlapping modes of essentially wavelike nature makes these components ac-

cessible for further downstream analysis such as space-frequency analysis, demodulation,

estimation of local orientation, edge and corner detection, texture analysis, denoising, in-

painting, and curvature estimation. The model decomposes the input signal into modes with

narrow Fourier bandwidth; to cope with sharp region boundaries, incompatible with narrow

bandwidth, we introduce binary support functions that act as masks on the narrow-band

mode for image re-composition. L1 and TV-terms promote sparsity and spatial compact-

ness. Constraining the support functions to partitions of the signal domain, we effectively

get an image segmentation model based on spectral homogeneity. By coupling several sub-

modes together with a single support function we are able to decompose an image into

several crystal grains. Our efficient algorithm is based on variable splitting and alternate

direction optimization; we employ Merriman-Bence-Osher-like [MBO92] threshold dynamics

to handle efficiently the motion by mean curvature of the support function boundaries un-

der the sparsity promoting terms. The versatility and effectiveness of our proposed model

is demonstrated on a broad variety of example images from different modalities. These

demonstrations include the decomposition of images into overlapping modes with smooth

or sharp boundaries, segmentation of images of crystal grains, and inpainting of damaged

image regions through artifact detection.

Part III of this dissertation is based on joint work with Igor Yanovsky of NASA Jet Propulsion

Laboratory. We introduce a variational method for destriping data acquired by pushbroom-

type satellite imaging systems. The model leverages sparsity in signals and is based on
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current research in sparse optimization and compressed sensing. It is based on the basic

principles of regularization and data fidelity with certain constraints using modern methods

in variational optimization - namely total variation (TV), both L1 and L2 fidelity, and the

alternate direction method of multipliers. The main algorithm in Part III uses sparsity pro-

moting energy functionals to achieve two important imaging effects. The TV term maintains

boundary sharpness of content in the underlying clean image, while the L1 fidelity allows

for the equitable removal of stripes without over- or under-penalization, providing a more

accurate model of presumably independent sensors with unspecified and unrestricted bias

distribution. A comparison is made between the TV-L1 and TV-L2 models to exemplify

the qualitative efficacy of an L1 striping penalty. The model makes use of novel minimiza-

tion splittings and proximal mapping operators, successfully yielding more realistic destriped

images in very few iterations.
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Part I

Variational Mode Decomposition
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CHAPTER 1

Introduction

Empirical Mode Decompositon (EMD) proposed by Huang et al. [HSL98] is an algorithmic

method to detect and decompose a signal into principal “modes” - a signal with mostly com-

pact supported Fourier spectrum. This algorithm recursively detects local minima/maxima

in a signal, estimates lower/upper envelopes by spline-interpolation of these extrema, re-

moves the average of the envelopes as “low-pass” centerline, thus isolating the high-frequency

oscillations as “mode” of a signal, and continues recursively on the extracted “low-pass” cen-

terline. In some cases, this sifting algorithm does indeed decompose a signal into principal

modes, however the resulting decomposition is highly dependent on methods of extremal

point finding, interpolation of extremal points into carrier envelopes, and the stopping cri-

teria imposed. The lack of mathematical theory and the aformentioned degrees of freedom

reducing the algorithm’s robustness all leave room for theoretical development and improve-

ment on the robustness of the decomposition [RFG03, RF08]. In some experiments it has

been shown that EMD shares important similarities with wavelets and (adaptive) filter banks

[FGR05].

Despite the limited mathematical understanding and some obvious shortcomings, the EMD

method, also known as the Hilbert-Huang transform (HHT), has had significant impact and

is widely used in a broad variety of time-frequency analysis applications. Applications involve

signal decomposition in audio engineering [Klu12], climate analysis [BE11], and various flux,

respiratory, and neuromuscular signals found in medicine and biology [AHL05, ANK06,

LHG08, MBL09], to name just a few examples.
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d) AM-FM signal and spectrum. (fAM ∼ fFM ∼ ∆f)

Figure 1.1: AM-FM signals with limited bandwidth. Here, we use a signal f(t) = (1 +

0.5 cos(2πfAMt)) · cos(2πfct+ ∆f/fFM cos(2πfFMt)). a) Pure AM signal. b) Pure FM signal

with little but rapid frequency deviations. c) Pure FM signal with slow but important

frequency oscillations. d) Combined AM-FM signal. The solid vertical line in the spectrum

shows the carrier frequency fc, the dotted lines correspond to the estimated band limits at

fc ±BW/2, based on (1.2).
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1.1 Intrinsic Mode Functions

With EMD, and in all of the previous signals, the core assumption on the individual modes

is that they have compact Fourier support. In the original description, in such a mode the

number of local extrema and zero-crossings differ at most by one [HSL98]. In most related

works, the definition is slightly changed into so-called Intrinsic Mode Functions (IMF).

Definition Intrinsic Mode Functions are amplitude-modulated-frequency-modulated (AM-

FM) signals, written as:

uk(t) = Ak(t) cos(φk(t)), (1.1)

where the phase φk(t) is a non-decreasing function, φ′k(t) ≥ 0, the envelope is non-negative

Ak(t) ≥ 0, and, very importantly, both the envelope Ak(t) and the instantaneous frequency

ωk(t) := φ′k(t) vary much slower than the phase φk(t) [DLW11, Gil13].

In other words, on a sufficiently long interval [t − δ, t + δ], δ ≈ 2π/φ′k(t), the mode uk(t)

can be considered to be a pure harmonic signal with amplitude Ak(t) and instantaneous

frequency φ′k(t) [DLW11]. Note that the newer definition of signal components is slightly

more restrictive than the original one. The immediate consequence of the IMF assumption

is limited bandwidth.

Indeed, if ωk is the mean frequency of a mode, then its practical bandwidth increases both,

with the maximum deviation of the instantaneous frequency, ∆f ∼ max(|ωk(t) − ωk|), and

with the rate of change of the instantaneous frequency, fFM ∼ ω′(t), according to Carson’s

rule: BW = 2(∆f + fFM) [Car22]. In addition to this comes the bandwidth of the envelope

Ak(t) modulating the amplitude of the FM signal, given by its highest frequency fAM. Hence

we estimate the total bandwidth of an IMF as

BW = 2(∆f + fFM + fAM). (1.2)

Depending on the actual IMF, either of these terms may be dominant. An illustration of

four typical cases is provided in figure 1.1, where the last example is rather extreme in terms
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of required bandwidth (for illustrational purposes).

Some recent works create a partially variational approach to EMD where the signal is ex-

plicitly modeled as an IMF [HS11]. This method still relies on interpolation, selection of

a Fourier low-pass filter, and sifting of high-frequency components. Here, the candidate

modes are extracted variationally. The signal is recursively decomposed into an IMF with

TV3-smooth envelope, and a TV3-smooth residual. The resulting algorithm is very similar

to EMD in structure, but somewhat more robust to noise.

A slightly more variational, but still recursive decomposition scheme has been proposed in

[Fel06], for the analysis of time-varying vibration. Here, the dominant vibration is extracted

by estimating its instantaneous frequency as average frequency after the Hilbert transform.

Again, this process is repeated recursively on the residual signal.

An approach based on selecting appropriate wavelet scales, dubbed synchrosqueezing, was

proposed by Daubechies et al. [DLW11, WFD11]. They remove unimportant wavelet co-

efficients (both in time and scale) by thresholding of the respective signal energy in that

portion. Conversely, locally relevant wavelets are selected as local maxima of the continuous

wavelet transform, that are shown to be tuned with the local signals, and from which the

current instantaneous frequency of each mode can be recovered.

Other recent work pursuing the same goal is the Empirical Wavelet Transform (EWT) to

explicitly build an adaptive wavelet basis to decompose a given signal into adaptive subbands

[Gil13]. This model relies on robust preprocessing for peak detection, then performs spectrum

segmentation based on detected maxima, and constructs a corresponding wavelet filter bank.

The filter bank includes flexibility for some mollification (spectral overlap), but explicit

construction of frequency bands still appears slightly strict.

In Part I, we propose a new, fully intrinsic and adaptive, variational method, the mini-

mization of which leads to a decomposition of a signal into its principal modes. Indeed,

the current decomposition models are mostly limited by 1) their algorithmic ad-hoc nature
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lacking mathematical theory (EMD), 2) the recursive sifting in most methods, which does

not allow for backward error correction, 3) the inability to properly cope with noise, 4) the

hard band-limits of wavelet approaches, and 5) the requirement of predefining filter bank

boundaries in EWT. In contrast, we propose a variational model that determines the rele-

vant bands adaptively, and estimates the corresponding modes concurrently, thus properly

balancing errors between them. Motivated by the narrow-band properties corresponding to

the current common IMF definition, we look for an ensemble of modes that reconstruct the

given input signal optimally (either exactly, or in a least-squares sense), while each being

band-limited about a center frequency estimated on-line. Here, our variational model specif-

ically can address the presence of noise in the input signal. Indeed, the tight relations to the

Wiener filter actually suggest that our approach has some optimality in dealing with noise.

The variational model assesses the bandwidth of the modes as H1-norm, after shifting the

Hilbert-complemented, analytic signal down into baseband by complex harmonic mixing.

The resulting optimization scheme is very simple and fast: each mode is iteratively updated

directly in Fourier domain, as the narrow-band Wiener filter corresponding to the current

estimate of the mode’s center-frequency being applied to the signal estimation residual of

all other modes; then the center frequency is re-estimated as the center-of-gravity of the

mode’s power spectrum. Our quantitative results on tone detection and separation show

excellent performance irrespective of harmonic frequencies, in particular when compared to

the apparent limits of EMD in this respect. Further, qualitative results on synthetic and

real test signals are convincing, also regarding robustness to signal noise.
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CHAPTER 2

Tools from Signal Processing

2.1 Gaussian regularizer and Wiener filtering

Let us start with a simple denoising problem. Consider the observed signal f0(t) to be a copy

of the original signal f(t) to be recovered, affected by additive zero-mean Gaussian noise:

f0 = f + η (2.1)

Recovering the unknown signal f is a typical ill-posed inverse problem [BPT88]. If the

original signal is known to vary smoothly, one would typically write the following Tikhonov

regularized minimization problem in order to estimate the noise-free signal [Tic63, Mor75]:

min
f

{
‖f − f0‖2

2 + α‖∂tf‖2
2

}
(2.2)

This is a standard, Gaussian regularized minimum mean squares, i.e. “L2-H1” problem, of

which the Euler-Lagrange equations are easily obtained as

f − f0 = α∂2
t f. (2.3)

These EL equations are typically solved in Fourier domain:

f̂(ω) =
f̂0

1 + αω2
, (2.4)

where f̂(ω) := F{f(·)}(ω) := 1/
√

2π
∫
R f(t)e−jωtdt, with j2 = −1, is the Fourier transform

of the signal f(t). Clearly, the recovered signal f is a low-pass narrow-band selection of the

input signal f0 around ω = 0. Indeed, the solution corresponds to convolution with a Wiener
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filter, where α represents the variance of the white noise, and the signal has a lowpass 1/ω2

power spectrum prior [Wie49, GW92].

2.2 Hilbert transform

Here, we cite the definition of the Hilbert transform given in [USV09]:

Definition The 1-D Hilbert transform is the linear, shift-invariant operator H that maps

all 1-D cosine functions into their corresponding sine functions. It is an all-pass filter that

is characterized by the transfer function ĥ(ω) = −j sgn(ω) = −jω/|ω|.

Thus, the Hilbert transform is a multiplier operator in the spectral domain. The correspond-

ing impulse response is h(t) = 1/(πt). Because h(t) is not integrable the integrals defining

the convolution do not converge. Instead, the Hilbert transform Hf(t) of a signal f(t) is

therefore obtained as the Cauchy principal value (denoted p.v.) of :

Hf(t) =
1

π
p.v.

∫
R

f(v)

t− vdv. (2.5)

Finally, the inverse Hilbert transform is given by its negative, H−1 = −H, thus:

H2f(t) = −f(t). (2.6)

For further properties and analysis of the Hilbert transform, we refer e.g. to [Hah96]. The

most prominent use of the Hilbert transform is in the construction of an analytic signal from

a purely real signal, as proposed by Gabor [Gab46].

2.3 Analytic signal

Definition Let f(t) be a purely real signal. The complex analytic signal is now defined as:

fA(t) = f(t) + jHf(t) = A(t)ejφ(t). (2.7)
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This analytic signal has the following important properties. The complex exponential term

ejφ(t) is a phasor describing the rotation of the complex signal in time, φ(t) being the phase,

while the amplitude is governed by the real envelope A(t). This representation is particularly

useful in the analysis of time-varying amplitude and instantaneous frequency, defined as

ω(t) = dφ(t)/dt. The second property is the unilateral spectrum of the analytic signal,

consisting only of non-negative frequencies, hence its use in single-sideband modulation.

Finally, we note that from such an analytical signal, the original real signal is easily retrieved

as the real part:

f(t) = <{fA(t)}. (2.8)

It is worthwhile highlighting the simple relations between the Fourier spectra of the real

signal and its analytic counterpart, as defined by (2.7). First, we recall that the (Fourier)

spectrum of a real signal is a Hermitian function:

f̂(−ω) = f̂(ω). (2.9)

In contrast, the spectrum of the analytic signal has only non-negative frequencies. In par-

ticular:

f̂A(ω) =


0 ω < 0

f̂(0) ω = 0

2f̂(ω) ω > 0.

(2.10)

2.4 Frequency mixing and heterodyne demodulation

The last concept that we wish to recall before introducing the proposed variational mode

decomposition, is the principle of frequency mixing. Mixing is the process of combining two

signals non-linearily, thus introducing cross-frequency terms in the output. The simplest

mixer is multiplication. Multiplying two real signals with frequencies f1 and f2, respectively,

creates mixed frequencies in the output at f1 − f2 and f1 + f2, which is easily illustrated by
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the following trigonometric identity:

2 cos(2πf1t) cos(2πf2t) = cos(2π(f1 + f2)t) + cos(2π(f1 − f2)t). (2.11)

Typical applications are the heterodyne downmixing of the modulated high-frequency carrier

signal with a local (heterodyne) oscillator in a radio receiver. In such devices, the selection of

either of the two output terms is achieved by filtering. Here, instead of filtering the output,

we mix the two respective analytic signals:

ej2πf1tej2πf2t = ej2π(f1+f2)t, (2.12)

i.e., the mixed signal is automatically “mono-tone” (constituted of a single frequency only).

In Fourier terms, this is well known as the following transform pair:

fA(t)e−jω0t F←→ f̂A(ω) ∗ δ(ω + ω0) = f̂A(ω + ω0), (2.13)

where δ is the Dirac distribution and ∗ denotes convolution. Thus, multiplying an analytic

signal with a pure exponential results in simple frequency shifting.
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CHAPTER 3

Variational Mode Decomposition

3.1 Constrained model

In this section we introduce our proposed model for variational mode decomposition, essen-

tially based on the three concepts outlined in the previous section.

The goal of VMD is to decompose an input signal into a discrete number of sub-signals

(modes), that have specific sparsity properties while reproducing the input. Here, the spar-

sity prior of each mode is chosen to be its bandwidth in spectral domain. In other words,

we require each mode k to be mostly compact around a center pulsation ωk, which is to be

determined along with the decomposition.

In order to assess the bandwidth of a mode, we propose the following scheme: 1) for each

mode uk, compute the associated analytic signal by means of the Hilbert transform in order

to obtain a unilateral frequency spectrum. 2) for each mode, shift the mode’s frequency

spectrum to “baseband”, by mixing with an exponential tuned to the respective estimated

center frequency. 3) The bandwidth is now estimated through theH1 Gaussian smoothness of

the demodulated signal, i.e. the squared L2-norm of the gradient. The resulting constrained

variational problem is the following:

min
uk,ωk

{∑
k

∥∥∥∥∂t [(δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
s.t.

∑
k

uk = f (3.1)
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3.2 Unconstrained model

The reconstruction constraint can be addressed in different ways. Here, we suggest making

use of both a quadratic penalty term and Lagrangian multipliers in order to render the

problem unconstrained. Therefore, we introduce the augmented Lagrangian L as follows

[Ber76, NW06]:

L(uk, ωk, λ) =

α
∑
k

∥∥∥∥∂t [(δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

+
∥∥∥f −∑uk

∥∥∥2

2
+
〈
λ, f −

∑
uk

〉
. (3.2)

The solution to the original minimization problem (1.1) is now found as the saddle point of

the augmented Lagrangian L in a sequence of iterative sub-optimizations called alternate di-

rection method of multipliers (ADMM). In the next paragraphs, we detail how the respective

sub-problems can be solved.

3.3 Minimization with respect to the modes uk

To update the modes uk, we first rewrite the subproblem as the following equivalent mini-

mization problem:

un+1
k = arg min

uk∈R

{
α

∥∥∥∥∂t [(δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

+

∥∥∥∥f −∑ui +
λ

2

∥∥∥∥2

2

}
. (3.3)

Making use of the Parseval/Plancherel Fourier isometry under the L2 norm, this problem

can be solved in spectral domain:

ûn+1
k = arg min

ûk,ûk=û∗k

α ‖jω [(1 + sgn(ω + ωk))ûk(ω + ωk)]‖2
2 +

∥∥∥∥∥f̂ −∑ ûi +
λ̂

2

∥∥∥∥∥
2

2

 . (3.4)

We now perform a change of variables ω → ω + ωk in the first term:

ûn+1
k = arg min

ûk,ûk=û∗k

α ‖j(ω − ωk) [(1 + sgn(ω))ûk(ω)]‖2
2 +

∥∥∥∥∥f̂ −∑ ûi +
λ̂

2

∥∥∥∥∥
2

2

 . (3.5)

12



Exploiting the Hermitian symmetry of the real signals in the reconstruction fidelity term,

we can write both terms as half-space integrals over the non-negative frequencies:

ûn+1
k = arg min

ûk,ûk=û∗k


∫ ∞

0

4α(ω − ωk)2|ûk(ω)|2 + 2

(
f̂ −

∑
ûi +

λ̂

2

)2

dω

 . (3.6)

The solution of this quadratic optimization problem is readily found by letting the first

variation vanish for the positive frequencies:

ûn+1
k =

(
f̂ −

∑
i 6=k

ûi +
λ̂

2

)
1

1 + 2α(ω − ωk)2
(3.7)

which is clearly identified as a Wiener filtering of the current residual, with signal prior

1/(ω − ωk)
2. The full spectrum of the real mode is then simply obtained by Hermitian

symmetric completion. Conversely, the mode in time domain is obtained as the real part of

the inverse Fourier transform of this filtered analytic signal.

3.4 Minimization with respect to the center frequencies ωk

The center frequencies ωk do not appear in the reconstruction fidelity term, but only in the

bandwidth prior. The relevant problem thus writes:

ωn+1
k = arg min

ωk

{∥∥∥∥∂t [(δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
. (3.8)

As before, the optimization can take place in Fourier domain, and we end up optimizing:

ωn+1
k = arg min

ωk

{∫ ∞
0

(ω − ωk)2|ûk(ω)|2dω
}
, (3.9)

This quadratic problem is easily solved as:

ωn+1
k =

∫∞
0
ω|ûk(ω)|2dω∫∞

0
|ûk(ω)|2dω , (3.10)

which puts the new ωk at the center of gravity of the corresponding mode’s power spectrum.

This mean carrier frequency is the frequency of a least squares linear regression to the

instantaneous phase observed in the mode.
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3.5 Complete VMD algorithm

Plugging the solutions of the sub-optimizations into the ADMM algorithm and directly op-

timizing in Fourier domain where appropriate, we get the complete algorithm for variational

mode decomposition, summarized in algorithm 1.

Algorithm 1 Complete optimization of VMD

1: Initialize û1
k, ω

1
k, λ̂

1, n← 0

2: repeat

3: n← n+ 1

4: for k = 1 : K do

5: Update ûk for all ω ≥ 0:

ûn+1
k ← f̂ −∑i<k û

n+1
i −∑i>k û

n
i + λ̂n

2

1 + 2α(ω − ωnk )2
(3.11)

6: Update ωk:

ωn+1
k ←

∫∞
0
ω|ûn+1

k (ω)|2dω∫∞
0
|ûn+1
k (ω)|2dω (3.12)

7: end for

8: Dual ascent for all ω ≥ 0:

λ̂n+1 ← λ̂n + τ

(
f̂ −

∑
k

ûn+1
k

)
(3.13)

9: until convergence:
∑

k ‖ûn+1
k − ûnk‖2

2/‖ûnk‖2
2 < ε.

3.6 Inexact reconstruction and denoising

Here, the role of the Lagrangian multiplier is to enforce the constraint, while the quadratic

penalty improves convergence. If exact reconstruction is not required, but some slack is

to be allowed, using the quadratic penalty only while dropping the Lagrangian multiplier
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would be the appropriate choice. Indeed, the quadratic penalty on its own represents the

least-squares fidelity prior associated with additive Gaussian noise.

3.7 On boundaries, periodicity, and windowing

Up until now, the signals f and the modes uk have been considered continuous over the

whole axis t ∈ R. However, in signal processing we are much more likely to be working with

signals that are both finite in time and resolution. Let us say we restrict the time window

to t ∈ [0, 1]. Luckily the results presented so far equally hold for discrete, finite time signals,

where simply the continuous Fourier transform is replaced by its discrete counterpart. The

only problems arise at the boundaries of the signal.

Indeed, when considering short-time signals, the implicit assumption here is that the signal

considered is just a one-period extract of an infinitely long, periodic signal. Consequently,

the spectrum of a seemingly simple “general trend”-function on a short interval, say f :

[0, 1] 7→ R : f(t) = t, contains an important amount of high-frequency harmonics, since

we are effectively looking at the spectrum of the periodic sawtooth function. Conversely

in time domain, we realize that at the endpoints of the domain, the periodized function is

discontinuous, thus severely affecting the H1 smoothing term.

There are two remedies to this. Ideally, one should exclude the boundaries of the domain

in the evaluation of the smoothness, i.e. restrict its evaluation to the open interval (0, 1).

However, this clearly breaks the Parseval/Plancherel Fourier isometry and the whole beauty

of the spectral solution is lost. Therefore, we suggest a less far-reaching remedy, that is

classically used in short-term Fourier analysis: smooth windowing. This approach is par-

ticularly useful in cases, where the variational mode decomposition is anyway performed on

short chunks of a much longer time series signal.

For simplicity, in the following examples, we will use a Gaussian window. This window is
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simply applied to the input signal f prior to performing the VMD algorithm. After de-

composition, the individual modes can be “unwindowed” by simple division. This, however,

will largely affect reconstruction fidelity close to the window borders. This is particularly

apparent in the single frame decomposition. In a sliding window short-time analysis of a

larger time series signal, however, instead of window division, the modes can be stitched

together by simple addition without error amplification.

16



CHAPTER 4

Experiments and Results

In this chapter, we apply the proposed VMD algorithm to a series of test signals in order

to assess the validity of our approach. First, we focus on a few problems that have been

successfully employed for highlighting the strengths and shortcomings of the EMD / Hilbert-

Huang-Transform, namely tones versus sampling, and tones separation [RFG03]. Then we

briefly investigate noise robustness of VMD. Finally, we shift our attention to more complex

signals, which have already been used in [HS11] and [Gil13].

4.1 Tones and sampling

When the input signal f = fν(t) = cos(2πνt) is composed of a pure harmonic, then the mode

decomposition is expected to output exactly this harmonic. As reported in [RFG03], this

does not happen to be the case with EMD, since the local extrema can suffer from important

jittering with increasing frequency. In [RFG03], the relative error

e(ν) = ‖fν(t)− u1(t)‖2/‖fν(t)‖2 (4.1)

was introduced, and a quadratic increase with frequency of an upper bound to this relative

error was reported for EMD. Further, EMD has pronounced spikes of near-perfect recon-

struction when the sampling frequency is an even multiple of the tone’s frequency.

Here, we perform this analysis for the proposed VMD model. We refrain from windowing

and consider exactly the same signals as for the EMD analysis. The results for different
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convergence tolerance levels ε are shown in figure 4.1. It can be clearly seen that the rela-

tive reconstruction error is largely independent of the harmonic’s frequency. Moreover, the

relative error is nicely controlled by the tolerance level ε.
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c) ε = 1e− 7 d) ε = 1e− 9

Figure 4.1: Mode decomposition of a pure harmonic: Relative error for a range of 257

frequencies, for different convergence tolerance levels ε. The relative error does not correlate

with the tone frequency. Further, reconstruction error can be controlled by decreasing the

stopping criterion’s convergence tolerance, except for frequencies very close to the Nyquist

frequency. In contrast, EMD’s relative tone reconstruction error is bounded by a quadratic

increase with frequency (dotted line) [RFG03].
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4.2 Tones separation

The next slightly more complicated challenge is the separation of two different superimposed

tones [RFG03]. Here, the input signal is composed of two different, pure harmonics:

fν1,ν2(t) = a1 cos(2πν1t) + a2 cos(2πν2t), (4.2)

with ν2 < ν1 < fs/2, and a1,2 two possibly different amplitudes. As a function of the

amplitude ratio ρ = a1/a2, EMD exhibits different, important regions of confusion, where

the two signals are too close in frequency to be separated correctly, as reported in [RFG03]

and illustrated in figure 4.2.

Again, we apply the same analysis to the proposed VMD model, and again we do not

employ any windowing. The results for varying amplitude ratios ρ ∈ {1/4, 1, 4} are shown in

figure 4.2 along with the corresponding EMD results. As can be clearly seen, the proposed

VMD achieves good tones separation over the whole domain except at the Nyquist frequency.

In particular, the decomposition quality is not significantly worse for close harmonics.
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Figure 4.2: Tones separation. In a superposition of two tones of frequencies ν2 < ν1 < fs/2

and equal amplitudes, the mode decompositions between EMD and VMD vary significantly.

The plot indicates relative error, with values between 0 (white) and 0.5 (black). a,c,e) EMD

has important areas of confusion (dark), where the tones cannot be separated correctly

[RFG03]. b,d,f) In contrast, VMD achieves good tones separation almost everywhere but

for ν1 too close to the Nyquist frequency.
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4.3 Noise robustness

To illustrate the VMD robustness with respect to noise in the input signal, we test using the

following tri-harmonic signal, affected by noise:

fn(t) = cos(4πt) +
1

4
cos(48πt) +

1

16
cos(576πt) + 0.1η, (4.3)

where η ∼ N (0, 1) represents the Gaussian additive noise. The noise level is quite important

with respect to the amplitude of the highest harmonic. We perform variational modes

decomposition into three modes, without Lagrangian multipliers in order to remove the

noise. The signal, and the three components estimated using VMD are shown in Fig. 4.3.

The strong, lowest frequency signal is recovered almost flawlessly. The medium-strength

medium-frequency signal is still detected at acceptable quality. The weak, high-frequency

signal, however, is difficult. The VMD algorithm correctly tunes the third center-frequency

on this harmonic, but the recovered mode is highly affected by the noise. Here, decreasing

the bandwidth by increasing α comes at the risk of not properly capturing the correct center

frequency, while too low an α includes more noise in the estimated mode. The mode could,

however, be cleaned further in post-processing. For reference, we note that the estimated

VMD center frequencies are off by 0.27%, 1.11% and 0.18% only.

We provide a comparison with EMD1 based on exactly the same signal in Fig. 4.4. The EMD

produces 7 estimated modes. The first two modes contain the highest-frequency harmonic,

and important amounts of noise. The forth mode comes closest to the middle harmonic,

however important features have been attributed to the third and fifth mode. The sixth

mode picks up most of the low frequency harmonic, but is severely distorted.

1Implementation by Gabriel Rilling, available at http://perso.ens-lyon.fr/patrick.flandrin/emd.
html
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Figure 4.3: VMD decomposition of noisy tri-harmonic. (a) The noisy input signal. (b)-(d)

The three modes extracted by denoising VMD, and the theoretical mode (dotted). (e) The

spectrum of the input signal, and (f) its distribution over the three modes.
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Figure 4.4: EMD decomposition of noisy tri-harmonic. (a) noisy input signal. (b)-(h) The

seven modes extracted by EMD. None of the modes corresponds to a pure harmonic.
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4.4 Complex multimode signals

Now we look at slightly more complex signals to be decomposed. In particular, we consider

the same test signals that were previously suggested in [HS11] and also used in [Gil13], with

the purpose of increased comparability.

4.4.1 General Linear Growth with Two Harmonics

The first signal is a composition of three simple components, namely a general linear trend

and two different harmonics:

fSig1(t) = 6t+ cos(8πt) + 0.5 cos(40πt). (4.4)

The signal, its three constituent modes, and the composite Fourier spectrum are shown in

figure 4.5. The main challenge of this signal is the linear growth term. Without windowing,

the higher order harmonics of the periodized sawtooth signal spread over the whole spectrum.

In order to reduce the effects of periodization, we apply Gaussian windowing. The cor-

responding windowed signal, and the respective VMD results are illustrated in detail in

figure 4.6. In particular, we show how the two non-zero center frequencies ω2 and ω3 quickly

converge towards the exact harmonics. The corresponding modes constitute a nice partition

of the input spectrum, with each mode being clearly dominant around its respective center

frequency. The three modes in time domain show nice separation into three distinct signals

of characteristic oscillations. After “unwindowing” by pointwise division of the estimated

modes by the Gaussian window, we recover good estimates of the true underlying modes

(dotted lines), valid on the central 60% of the signal.
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Figure 4.5: a) fSig1(t), b–d) its constituent modes. e) The signal’s spectrum.
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Figure 4.6: VMD decomposition of fSig1. a) The applied window, b) the windowed signal,

and c) its spectrum. d) Evolution of the detected center frequencies, and e) the corresponding

spectrum decomposition. f–h) the reconstructed modes prior to, and i–k) after Gaussian

window removal.
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4.4.2 General Quadratic Growth with Chirp Signal and Piecewise Harmonics

The second example uses a quadratic trend, a chirp signal, and a third mode with sharp

transition between two constant frequencies2:

fSig2(t) = 6t2 + cos(10πt+ 10πt2) +


cos(60πt) t ≤ 0.5

cos(80πt− 10π) t > 0.5

(4.5)

The signal, its three constituent modes, and the composite Fourier spectrum are shown in

figure 4.7. The instantaneous frequency of the chirp is given by the time derivative of its

phase:

ω(t) := ∂tφ(t) = 10π + 20πt. (4.6)

Thus, for t ∈ [0, 1] the instantaneous frequency varies linearly between 10π an 30π. Con-

sequently, the theoretical center frequency of the mode is located at 20π. The piecewise-

constant bi-harmonic has spectral peaks expected at 60π and 80π.

Here, too, we employ Gaussian windowing to alleviate periodization artifacts. Indeed, the

windowed signal has a much cleaner spectrum, and the expected peaks of the signal’s com-

ponents become more prominent, as illustrated in figure 4.8. Again, the estimated center

frequencies ωk converge to the expected frequencies precisely. Here, we chose to decompose

into four modes, thus assigning each half of the piecewise-constant frequency signal to a

separate mode. The spectral partitioning can be nicely appreciated in the spectral plot of

the different modes. The unwindowed mode estimates fit well the theoretical signals, except

again for boundary issues.

2Here, we changed the phase shift in the third component, with piecewise-constant frequency, from 15π
to 10π, in order to have a continuous signal.
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Figure 4.7: a) fSig2, b–d) its constituent modes. e) The signal’s spectrum.
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Figure 4.8: Results of VMD on fSig2. a) The applied window, b) the windowed signal, and

c) its spectrum. d) Evolution of the detected center frequencies, and e) the corresponding

spectrum decomposition. f–i) the reconstructed modes prior to, and j–m) after Gaussian

window removal.
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4.4.3 Intrawave Frequency Modulation

The third synthetic signal has intrawave frequency modulation:

fSig3(t) =
1

1.2 + cos(2πt)
+

cos(32πt+ 0.2 cos(64πt))

1.5 + sin(2πt)
. (4.7)

The signal, its three constituent modes, and the composite Fourier spectrum are shown in

figure 4.9. While the first, bell-shaped component has mostly low-pass content, the second

mode’s main peak is clearly identified at 32π. However, due to the non-linear intrawave

frequency modulation, an important amount of higher-order harmonics are also observed at

32π + 64π = 96π, 32π + 2 · 64π = 160π and 32π + 3 · 64π = 224π, respectively. This second

component obviously violates the narrowband assumption, and one would naturally expect

some difficulties recovering this mode using VMD. Indeed, by Carson’s rule, the mode’s

bandwidth here is dominantly controlled by the relatively high frequency of the modulating

term cos(64πt), essentially spreading the mode over the whole practical spectrum.

The slightly windowed signal and the corresponding VMD results are illustrated in fig-

ure 4.10. The non-zero ω2 quickly converges to the correct main frequency 32π. The higher

order harmonics are not uniquely attributed to the second mode, but shared between both

modes. Consequently, the intrawave frequency modulation is shared by both modes, creating

some ripples in the otherwise low-frequency mode. Nonetheless, the reconstructed estimated

modes fit well the constituent signals (dotted lines). Most of the error occurs at the bound-

aries, and at the very center of the signal, where the low-frequency mode has a sharp peak,

involving some higher frequency features wrongly attributed to the higher-frequency mode.
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Figure 4.9: a) fSig3, b–c) its constituent modes. d) The signal’s spectrum.
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Figure 4.10: Results of VMD on fSig3. a) The applied window, b) the windowed signal, and

c) its spectrum. d) Evolution of the detected center frequencies, and e) the corresponding

spectrum decomposition. f–g) the reconstructed modes prior to, and h–i) after Gaussian

window removal.

4.4.4 Electrocardiogram Signal

The fourth example is a real signal from an electrocardiogram (ECG), data shared by [Gil13].

These data present numerous components, as seen in figure 4.11. Beyond the expected spikes-

train driven by the rhythm of the heartbeat, one can clearly see an oscillating low-frequency

pattern. At the other end of the spectrum, there is distinct high-frequency noise at a single

high-pitch harmonic, most likely the electric power-line frequency. The distinct spikes of the

ECG signal create important higher-order harmonics.

The spectrum after slight Gaussian windowing, and the results of VMD are depicted in

figure 4.12. We chose a high-number of 10 modes to be detected, to accommodate the
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numerous higher-order harmonics of the spikes. The respective center frequencies nicely

converge to these spectral peaks. The first, low-frequency mode captures the low-frequency

oscillation of the baseline. The highest frequency mode contains the most noise. The first

actual ECG specific mode oscillates precisely at the frequency of the heartbeat. The higher

ECG modes then contain the higher-order wave-packages around the highly non-sinusoidal

spikes. A “clean” ECG signal can be reconstructed by summing all but the first and last

VMD modes, thus discarding the low-frequency baseline oscillation and most of the high-

frequency noise.
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Figure 4.11: a) ECG signal 7. b) Detail. c) The signal’s spectrum.
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Figure 4.12: Results of ECG signal 7. a) The applied window, b) the windowed signal, and

c) its spectrum. d) Evolution of the detected center frequencies. e–l) The reconstructed

modes prior to Gaussian window removal. m) Cleaned ECG, and n) detail.
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CHAPTER 5

Conclusions and Outlook

In Part I, we have presented a novel variational method for decomposing a signal into an

ensemble of band-limited intrinsic mode functions, that we call Variational Mode Decom-

position, (VMD). In contrast to existing decomposition models, like the empirical mode de-

composition (EMD), we refrain from modeling the individual modes as signals with explicit

IMFs. Instead, we replace the most recent definition of IMFs, namely their characteristic de-

scription as AM-FM signals, by the corresponding narrow-band property. Indeed, we provide

a formula that relates the parameters of the explicit AM-FM descriptors to the estimated

signal bandwidth.

Our decomposition model solves the inverse problem as follows: decompose a signal into a

given number of modes, either exactly or in a least squares sense, such that each individual

mode has limited bandwidth. We assess the mode’s bandwidth as the squared H1 norm of its

Hilbert complemented analytic signal with only positive frequencies, shifted to baseband by

mixing with a complex exponential of the current center frequency estimate. The variational

problem is solved very efficiently in a classical ADMM approach: The modes are updated by

simple Wiener filtering, directly in Fourier domain with a filter tuned to the current center

frequency, then the center frequencies are updated as the center of gravity of the mode’s

power spectrum, and finally the Lagrangian multiplier enforcing exact signal reconstruction

is updated as dual ascent.

In our experiments, we show that the proposed VMD scheme clearly outperforms EMD with

regards to tone detection, tone separation, and noise robustness. Further, we apply our
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model to more complicated signals for comparison with other state-of-the-art methods, and

can show successful decomposition.

The most important limitation of the proposed VMD is with boundary effects, and sudden

signal onset in general. This is strongly related to the use of an L2-based smoothness

term, that overly penalizes jumps at the domain borders and within; conversely, this is also

reflected by implicit periodicity assumptions when optimizing in Fourier domain, and by the

narrow-band violation caused by discontinuous envelopes in such AM-FM signals. Another

point that critics might highlight, is the required explicit (manual) selection of the number

of active modes in the decomposition, like in EWT but as opposed to EMD. The work in

Part II addresses these shortcomings and extends to signals on domains of dimension greater

than one.
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Part II

Two-Dimensional Compact

Variational Mode Decomposition:

Spatially compact and spectrally

sparse image decomposition and

segmentation
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CHAPTER 1

Introduction

In Part II, we are interested in decomposing images f : Rn → R into ensembles of constituent

modes (components) that have specific directional and oscillatory characteristics. Simply

put, the goal is to retrieve a small number K of modes uk : Rn → R, that each have a very

limited bandwidth around their characteristic center frequency ωk. These modes are called

intrinsic mode functions (IMF) and can be seen as amplitude- and frequency-modulated

(AM-FM) n-D signals (“plane”-waves). Such a mode can have limited spatial support, its

local (instantaneous) frequency and amplitude vary smoothly, several modes can overlap in

space, and together the ensemble of modes should reconstruct the given input image up to

noise and singular features.

Many fields use signal decomposition as a fundamental tool for quantitative and technical

analysis. In remote sensing, decomposing images based on frequency content and signal

priors, such as housing lattices and terrain structures, is useful for segmentation, identifica-

tion, and classification [DLL14]. In oceanography, a combination of baroclinic modes helps

model density profiles of seasonal cycles, and other geophysical phenomena such as thermal

or solar variation [FPS08, SBC12]. Similarly, in seismology, modes with differing frequency

components help highlight different geological and stratigraphic information [HB13]. In

holography, mode decomposition allows reducing speckle [LPD14]. In the fields of energy

and power engineering, mode decompositions are used for vibration analysis and fault de-

tection, e.g., [GLS13, TZY11]. Multivariate mode decomposition and mode entropy analysis

are useful tools in neural data analysis [HL11]. In crystallography, because the crystal lattice
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exhibits multiple spatial periodicities, interpretable as a superposition of multiple different

cosine-waves, we wish to couple several “sub-modes” into a single phase. This coupled-mode

decomposition enables robust estimates of mesoscopic properties such as crystal defects, rota-

tions, and grain boundaries. Recent work in crystal orientation detection includes variational

methods based on tensor maps in conjunction with a regularization scheme [EW14] and 2D

synchrosqueezed transforms [YLY14]. In nanoscale imaging, segmentation enables analyses

and comparisons of surface regions of different structures as well as directed measurements

of function, spectra, and dynamics [SMH05, TSH15]. Ultimately, efficient segmentation will

enable directed data acquisition and parsing acquisition time between different modalities

to assemble and to converge complementary structural, functional, and other information.

Independent of the scientific discipline, sparse signal decomposition provides expansive utility

and a more advanced podium from which to elucidate greater understanding.

1.1 Recent and related work

The problem is inspired by the one-dimensional empirical mode decomposition (EMD) al-

gorithm [HSL98] and its more recent derivates, such as [FGR05, HS11, HS13, HS15, MP07,

RF08, RF09, RFG03, SV05, THS14, WH09]. We are interested in the two-dimensional (2D)

analogs and extensions of such decomposition problems. The 2D extension of EMD [NBD03]

similarily uses recursive sifting of 2D spatial signals by means of interpolating upper and

lower envelopes, median envelopes, and thus extracting image components in different “fre-

quency” bands. This 2D-EMD, however, suffers from the same drawbacks in robustness as

the original EMD in extremal point finding, interpolation of envelopes, and stopping criteria

imposed. More recent work, such as the Prony-Huang Transform [SPB14], has only partially

improved on some of these drawbacks using modern variational and transform methods.

Classical decomposition methods include the discrete Fourier transform (DFT) and the con-

tinuous wavelet transform (CWT), where a fixed basis can be used to find a sparse repre-

44



sentation. Using more general bases or frames, extended methods such as matching pursuit

decomposition (MP), method of frames, best orthogonal basis (BOB), and basis pursuit

(BP) are more robust and, in principle, decompose a signal into an “optimal” superposition

of dictionary elements. Though these methods have had success with simple signals, they

are still not fully robust to non-stationary waves and require a large, redundant dictionary

of elements, which are not reflective of the specifics of the given signal.

More specific methods for directional image decomposition work by mostly rigid frames,

decomposing the Fourier spectrum into fixed, mostly or strictly disjoint, (quasi-)orthogonal

basis elements. Examples include Gabor filters [Tai96], wavelets [Dau88, DV01, Mal89],

curvelets [CD99], or shearlets [GL07, LLK05]. These methods are not adaptive relative to

the signal, and can attribute principle components of the image to different bands, as well as

contain several different image components in the same band. Adaptivity and tuned sparsity

concerns have been addressed through synchrosqueezed wavelet transforms [COP12, DLW11,

WFD11, YY13], where unimportant wavelet coefficients are removed by thresholding based

on energy content. In pursuit of the same goal, the 2D empirical wavelet transform (EWT)

[Gil13, GTO14] decomposes an image by creating a more adaptive wavelet basis.

In previous work [DZ14], Dragomiretskiy and Zosso defined a fully variational model for

mode decomposition of 1D signals. The so-called variational mode decomposition (VMD) in

1D is essentially based on well-established concepts such as Wiener filtering, the 1D Hilbert

transform and the analytic signal, and heterodyne demodulation. The goal of 1D-VMD is

to decompose an input signal into a discrete number of sub-signals (modes), where each

mode has limited bandwidth in the spectral domain. In other words, one requires each mode

uk : R → R to be mostly compact around a center pulsation ωk, which is to be determined

along with the decomposition. In order to assess the bandwidth of a mode, the following

scheme was proposed: 1) for each mode uk, compute the associated analytic signal by means

of the Hilbert transform in order to obtain a unilateral frequency spectrum. 2) For each

mode, shift the mode’s frequency spectrum to “baseband”, by mixing with an exponential
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tuned to the respective estimated center frequency. 3) The bandwidth is now estimated

through the H1 smoothness (Dirichlet energy) of the demodulated signal. The resulting

constrained variational problem is the following:

min
uk : R→R, ωk

{∑
k

∥∥∥∥∂t [{(δ(·) +
j

π·

)
∗ uk(·)

}
(t)e−jωkt

]∥∥∥∥2

2

}
s.t. ∀t ∈ R :

∑
k

uk(t) = f(t).

(1.1)

In [DZ14], it was shown that this variational model can be minimized efficiently and it

outperforms empirical mode decomposition algorithms in various respects, most notably

regarding noise robustness and mode cleanliness.

1.2 Proposed method

Here we propose a natural two-dimensional extension of the (1D) variational mode decompo-

sition algorithm [DZ14] in the context of image segmentation and directional decomposition.

The 2D-VMD algorithm is a non-recursive, fully adaptive, variational method that sparsely

decomposes images in a mathematically well-founded manner.

Here, we are interested in making the advantages of the variational model accessible for the

2D case (and higher dimensions equally so). The first order of business is thus to generalize

the 1D-VMD model to the multidimensional case, as sketched in [DZ15]. Second, we want to

address an intrinsic conflict of the VMD model, namely the inverse relation between spatial

and frequency support: in 1D-VMD it was noted that the algorithm had difficulties whenever

signals exhibited sudden onset and amplitude changes, since these effectively represent a

violation of the assumptions of Bedrosian’s theorem, a key element of the VMD model.

In this work, we address this issue by further introducing a separate amplitude function

that masks the underlying mode spatially, which allows decoupling spatial from spectral
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support. In 2D, this approach allows extraction of modes with sharp boundaries. We then

introduce various priors on the shape of the amplitude function. Requiring the amplitude

function to be binary and penalizing its total variation regularizes the mode boundaries.

Restricting the ensemble of amplitude functions associated with the various modes to the

probability simplex at each pixel leads to non-overlapping modes effectively segmenting the

image. Coupling several modes to share a single support function further allows extraction

of multi-wave textures, such as hexagonal lattice patterns.
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CHAPTER 2

Two-dimensional Variational Mode Decomposition

We design the 2D model analogously to its 1D predecessor, minimizing the constituent sub-

signals bandwidth while maintaining data fidelity. While derivatives in higher dimensions are

simply generalized by gradients, and modulation is also straightforward, the generalization

of the analytic signal is less obvious. To complete the analogy, we must first define the

appropriate “analytic signal”-equivalent in the n-D context.

2.1 n-D Hilbert transform / Analytic signal

In the 1D time domain, the analytic signal is achieved by adding the Hilbert transformed

copy of the original signal f : R→ R as imaginary part [Gab46]:

fAS : R → C

fAS(t) 7→ f(t) + jH{f}(t),
(2.1)

where j2 = −1, and the 1D Hilbert transform is defined as:

H{f}(t) :=

{
1

πs
∗ f(s)

}
(t) =

1

π
p.v.

∫
R

f(s)

t− sds, (2.2)

where ∗ denotes convolution. We note that the real signal is recovered simply by taking the

real component of the analytic signal.

In the spectral domain, this definition of analytic signal corresponds to suppressing the
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negative frequencies, thus giving it a unilateral spectrum:

f̂AS(ω) =


2f̂(ω), if ω > 0,

f̂(ω), if ω = 0,

0, if ω < 0,

(2.3)

where

f̂(ω) := F{f(·)}(ω) = 1/
√

2π

∫
R
f(t)e−jωtdt

is the unitary Fourier transform in 1D.

Single-sidedness of the analytic signal spectrum was the key property motivating its use in

the 1D case, since this property allowed for easy frequency shifting to base-band by complex

exponential mixing. Therefore, to mimic this spectral property in 2D, one half-plane of the

frequency domain must effectively be set to zero;1 this half-plane is chosen relative to a

vector, in our case to ~ωk. Thus the 2D analytic signal of interest can first be defined in the

frequency domain by generalizing the concept of half-space spectrum suppression:

f̂AS(~ω) =


2f̂(ω), if 〈~ω, ~ωk〉 > 0,

f̂(ω), if 〈~ω, ~ωk〉 = 0,

0, if 〈~ω, ~ωk〉 < 0,

= (1 + sgn(〈~ω, ~ωk〉)f̂(~ω)

(2.4)

where the n-D Fourier transform is defined as

f̂(~ω) := F{f(·)}(~ω) = (2π)−n/2
∫
Rn
f(~x)e−j〈~ω,~x〉d~x.

The 2D analytic signal in the time domain with the aforementioned Fourier property is

given in [BS99]. It is easy to see how the generalized analytic signal reduces to the classical

definition in 1D.

1Similarly, in higher dimensions, a half-space of the frequency domain needs to be suppressed.
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2.2 n-D VMD functional

We are now able to put all the generalized VMD ingredients together to define the two-

dimensional extension of variational mode decomposition. The functional to be minimized,

stemming from this definition of n-D analytic signal, is:

min
uk : Rn→R, ~ωk∈Rn

{∑
k

αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2

}
s.t. ∀~x ∈ Rn :

∑
k

uk(~x) = f(~x), (2.5)

where uAS,k denotes the generalized analytic signal obtained from the mode uk according to

(2.4) using its associated center frequency ωk. We thus minimize the Dirichlet energy of the

modes after half-space spectrum suppression (uk → uAS,k) and demodulation to baseband

(e−j〈~ωk,~x〉), subject to collective signal fidelity. This model specifically includes the desired

two-dimensional case n = 2, and reduces to the earlier 1D-VMD for n = 1.

Entirely analogous to the 1D-VMD model, the reconstruction constraint is addressed through

the introduction of a quadratic penalty and Lagrangian multiplier (the augmented La-

grangian, AL, method), and we proceed by alternate direction minimization (ADMM) for

optimization [Ber76, DZ14, NW06].

2.3 Augmented Lagrangian and ADMM Optimization

To render the constrained minimization problem (2.5) unconstrained, we include both a

quadratic penalty and a Lagrangian multiplier to enforce the fidelity constraint. We thus

define the augmented Lagrangian:

L({uk} , {ωk} , λ) :=∑
k

αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+
∥∥∥f(~x)−

∑
uk(~x)

∥∥∥2

2
+
〈
λ(~x), f(~x)−

∑
uk(~x)

〉
. (2.6)
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where λ : Rn → R is the Lagrangian multiplier. We can now solve the unconstrained saddle

point problem instead of (2.5):

min
uk : Rn→R, ~ωk∈Rn

max
λ : Rn→R

L({uk} , {ωk} , λ) (2.7)

The solution to the original constrained minimization problem (2.5) is now found as the

saddle point of the augmented Lagrangian L in a sequence of iterative sub-optimizations

called alternate direction method of multipliers (ADMM) [Ber76, Hes69, Roc73a]. The idea

is to iterate the following sequence of variable updates:

ut+1
k ← arg min

uk : Rn→R
L
({
ut+1
i<k

}
, uk,

{
uti>k

}
,
{
ωti
}
, λt
)

(2.8a)

~ωt+1
k ← arg min

~ωk∈Rn
L
({
ut+1
i

}
,
{
~ωt+1
i<k

}
, ~ωk,

{
~ωti>k

}
, λt
)

(2.8b)

λt+1 ← λt + τ
(
f −

∑
ut+1
k

)
(2.8c)

for 1 > τ ≥ 0. For simplified notation while considering the subminimization problems (2.8a)

and (2.8b) in the following paragraphs, we incorporate the Lagrangian multiplier term λ into

the quadratic penalty term, and rewrite the objective expression slightly different:

L({uk} , {ωk} , λ) =∑
k

αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+

∥∥∥∥f(~x)−
∑

uk(~x) +
λ(~x)

2

∥∥∥∥2

2

−
∥∥∥∥λ(~x)2

4

∥∥∥∥2

2

(2.9)

2.4 Minimization w.r.t. the modes uk

The relevant update problem derived from (2.9) is

un+1
k = arg min

uk : Rn→R

{
αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+
∥∥∥f(~x)−

∑
i

ui(~x) +
λ(~x)

2

∥∥∥2

2

}
(2.10)

Since we are dealing with L2-norms, we can make use of the L2 Fourier isometry and rewrite

the subminimization problem in spectral domain (thus implicitly assuming periodic boundary

conditions):

ûn+1
k = arg min

ûk|uk : Rn→R

{
αk ‖j~ω [ûAS,k(~ω + ~ωk)]‖2

2 +
∥∥∥f̂(~ω)−

∑
i

ûi(~ω) +
λ̂(~ω)

2

∥∥∥2

2

}
. (2.11)
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The ωk-term in the spectrum of the analytic signal is due to the modulation with the complex

exponential, and justified by the well-known transform pair:

f(~x)e−j〈~ω0,~x〉 F←→ f̂(~ω) ∗ δ(~ω + ~ω0) = f̂(~ω + ~ω0), (2.12)

where δ is the Dirac distribution and ∗ denotes convolution. Thus, multiplying an analytic

signal with a pure exponential results in simple frequency shifting. Further, we can push the

frequency shift out of the analytic signal spectrum through a change of variables, to obtain:

ûn+1
k = arg min

ûk|uk : Rn→R

{
αk ‖j(~ω − ~ωk) [ûAS,k(~ω)]‖2

2 +
∥∥∥f̂(~ω)−

∑
i

ûi(~ω) +
λ̂(~ω)

2

∥∥∥2

2

}
. (2.13)

We now plug in the spectral definition of the n-D analytic signal (2.4),

ûAS,k(~ω) = (1 + sgn(〈~ω, ~ωk〉))ûk(~ω).

Also, the spectra in the second term have Hermitian symmetry, since they correspond to

real signals. Let

Ωk ⊂ Rn : Ωk := {~ω | 〈~ω, ~ωk〉 ≥ 0}

denote the frequency domain half-space to which the n-D analytic signal is restricted. We

rewrite both terms as integrals over these frequency domain half-spaces:

ûn+1
k = arg min

ûk|uk : Rn→R

{
2αk

∫
Ωk

|~ω−~ωk|2|ûk(~ω)|2d~ω+

∫
Ωk

∣∣∣f̂(~ω)−
∑
i

ûi(~ω)+
λ̂(~ω)

2

∣∣∣2d~ω}. (2.14)

This subminimization problem is now solved by letting the first variation w.r.t. ûk vanish2.

The optimal mode spectrum thus satisfies:

0 = 2αk|~ω − ~ωk|2ûk −
(
f̂(~ω)−

∑
i

ûi(~ω) +
λ̂(~ω)

2

)
, ∀~ω ∈ Ωk. (2.15)

With this optimality condition, solving for ûk yields the following Wiener-filter update:

ûn+1
k (~ω) =

(
f̂(~ω)−

∑
i 6=k

ûi(~ω) +
λ̂(~ω)

2

) 1

1 + 2αk|~ω − ~ωk|2
, ∀~ω ∈ Ωk. (2.16)

2Note that the spectrum of uk is complex valued so the process of “taking the first variation” is not self-
evident. However, the functional is analytic in ûk and complex-valued equivalents to the standard derivatives
do indeed apply.
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The full spectrum ûn+1
k can then be obtained by symmetric (Hermitian) completion. Equiv-

alently, we can decide to update the half-space analytic signal of the mode, ûn+1
AS,k, on the

entire frequency domain, instead:

ûn+1
AS,k(~ω) =

(
f̂(~ω)−

∑
i 6=k

ûi(~ω) +
λ̂(~ω)

2

) 1 + sgn(〈~ω, ~ωk〉)
1 + 2αk|~ω − ~ωk|2

, ∀~ω ∈ Rn, (2.17)

from which the actual mode estimate is recovered as the real part after inverse Fourier

transform. The term in parentheses is the signal’s k-th residual, where f̂(~ω)−∑i 6=k ûi(~ω) is

the explicit current residual, and λ̂ accumulates the reconstruction error over iterations (see

below). The second term is identified as a frequency filter tuned to the current estimate of

the mode’s center pulsation, ~ωk, and whose bandwidth is controlled by the parameter αk.

2.5 Minimization w.r.t. the center frequencies ~ωk

Optimizing for ~ωk is even simpler. Indeed, the respective update goal derived from (2.9) is

~ωn+1
k = arg min

~ωk∈Rn

{
αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2

}
. (2.18)

Or, again we may consider the equivalent problem in the Fourier domain:

~ωn+1
k = arg min

~ωk∈Rn

{
αk
∥∥j(~ω − ~ωk)(1 + sgn(〈~ωk, ~ω〉))ûk(~ω)

∥∥2

2

}
(2.19)

= arg min
~ωk∈Rn

{
4αk

∫
Ωk

|~ω − ~ωk|2 |ûk(~ω)|2 d~ω
}
. (2.20)

The minimization is solved by letting the first variation w.r.t. ~ωk vanish, leading to:∫
Ωk

(~ω − ~ωn+1
k ) |ûk(~ω)|2 d~ω = 0. (2.21)

The resulting solutions are the centers of gravity of the modes’ power spectra, |ûk(~ω)|2,

restricted to the half-space Ωk:

~ωn+1
k =

∫
Ωk
~ω|ûk(~ω)|2d~ω∫

Ωk
|ûk(~ω)|2d~ω =

∫
Rn ~ω|ûAS,k(~ω)|2d~ω∫
Rn |ûAS,k(~ω)|2d~ω , (2.22)

where the second form is given for implementation purposes, based on the analytic signal

spectrum and involving the entire frequency domain.
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2.6 Maximization w.r.t. the Lagrangian multiplier λ

Maximizing the λ is the simplest step in the algorithm. The first variation for λ is just the

data reconstruction error, f(~ω)−∑k u
n+1
k (~ω). We use a standard gradient ascent with fixed

time step 1 > τ ≥ 0 to achieve this maximization:

λn+1(~x) = λn(~x) + τ

(
f(~x)−

∑
k

un+1
k (~x)

)
. (2.23)

It is important to note that choosing τ = 0 effectively eliminates the Lagrangian update

and thus reduces the algorithm to the penalty method for data fidelity purposes. Doing so

is useful when exact data fidelity is not appropriate, such as in (high) noise scenarios, we

reconstruction error actually allows capturing noise separately.

Note also that the linearity of the Euler-Lagrange equation allows an impartial choice in

which space to update the Lagrangian multiplier, either in the time domain or in the fre-

quency domain. In our implementation, we perform our dual ascent update in the frequency

domain, since the other appearance of the Lagrangian multiplier in (2.17) is in spectral

terms, as well. Thus:

λ̂n+1(~ω) = λ̂n(~ω) + τ

(
f̂(~ω)−

∑
k

ûn+1
k (~ω)

)
. (2.24)

2.7 Complete 2D VMD algorithm

The entire proposed algorithm for the 2D-VMD functional optimization problem (2.5) is

summarized in algorithm 2. Variables are trivially initialized at 0, except for the center

frequencies, ~ωk, for which smart initialization is of higher importance; initial ~ω0
k can, e.g., be

spread randomly, radially uniform, or initialized by user input. Further, we choose to assess

convergence in terms of the normalized rate of change of the modes. Typical thresholds ε > 0

range in orders of magnitude from 10−4 (fast) down to 10−7 (very accurate). An example of

image decomposition achieved with 2D VMD according to algorithm 2 is shown in figure 7.1.
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Algorithm 2 2D-VMD

1: Input: signal f(~x), number of modes K, parameters αk, τ , ε.

2: Output: modes uk(~x), center frequencies ~ωk.

3: Initialize {ω0
k}, {û0

k} ← 0, λ̂0 ← 0, n← 0

4: repeat

5: n← n+ 1

6: for k = 1 : K do

7: Create 2D mask for analytic signal Fourier multiplier:

Hn+1
k (~ω)← 1 + sgn(〈~ωnk , ~ω〉)

8: Update ûAS,k:

ûn+1
AS,k(~ω)← Hn+1

k (~ω)

 f̂(~ω)−∑
i<k

ûn+1
i (~ω)−∑

i>k

ûni (~ω) + λ̂n(~ω)
2

1 + 2αk|~ω − ~ωnk |2


9: Update ~ωk:

~ωn+1
k ←

∫
R2 ~ω|ûn+1

AS,k(~ω)|2d~ω∫
R2 |ûn+1

AS,k(~ω)|2d~ω
10: Retrieve uk:

un+1
k (~x)← <

(
F−1

{
ûn+1
AS,k(~ω)

})
11: end for

12: Dual ascent (optional):

λ̂n+1(~ω)← λ̂n(~ω) + τ

(
f̂(~ω)−

∑
k

ûn+1
k (~ω)

)

13: until convergence:
∑

k ‖ûn+1
k − ûnk‖2

2/‖ûnk‖2
2 < ε.
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CHAPTER 3

VMD with Compact Spatial Support

A main assumption regarding the intrinsic mode functions considered so far is that their

amplitude (spatially) varies much more slowly than the wavelength of the carrier. Indeed,

IMFs can be defined as signals (in time or space) that are both amplitude and frequency

modulated [DLW11]. In [DZ14], we have defined the total practical IMF bandwidth of such

an AM-FM signal, as an extension to Carson’s rule for FM-signal bandwidth [Car22]:

BWAM-FM := 2(∆f + fFM + fAM), (3.1)

where ∆f and fFM represent the frequency swing and modulation bandwidth, respectively,

of the FM part, while fAM denotes the bandwidth of the amplitude modulation. The last,

AM bandwidth, conflicts with signals composed of modes having sudden signal onset, in

particular those with compact spatial support. Indeed, this inverse relation between spatial

and spectral compactness is well known and stated by the Heisenberg uncertainty principle.

3.1 Introducing binary support functions Ak

To make our “modes have limited bandwidth”-prior compatible with signals of limited spatial

support, it is thus necessary to deal with the spatial and spectral compactness of the modes,

separately. To this end, we introduce a binary support function for each mode, in order to

capture the signal onset and offset disconnected from the smooth AM-FM modulations.

We consider signals and modes f, uk : Rn → R (thus including both the 1D-VMD and higher
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dimensional signals such as 2D-VMD stated above). Let

Ak : Rn → {0, 1}

denote the binary support functions for each mode uk. The mode decomposition problem

can then formally be stated as

find uk, Ak s.t. f =
∑
k

Ak · uk,

i.e., we want the modes uk, now masked by their binary support function Ak, to reproduce

collectively the given input signal. Note that the modes uk can extend arbitrarily into

their inactive regions where Ak = 0; in particular, they can decay smoothly or oscillate ad

infinitum, thus keeping small spectral bandwidth.

3.2 Sparsity promoting VMD functional

It is important to introduce sparsity promoting regularity constraints on the support function

to achieve reasonable compact local support. Here, we consider both total variation (TV) and

L1 penalties on Ak, thus effectively penalizing support area and boundary length (through

the co-area formula).

We incorporate the binary support functions Ak and their regularizers in the n-D VMD

functional as follows:

min
uk : Rn→R, Ak : Rn→{0,1}, ~ωk∈Rn

{∑
k

αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1

}
s.t. ∀~x ∈ Rn :

∑
k

Ak(~x)uk(~x) = f(~x). (3.2)

The L1 penalties on Ak and ∇Ak ensure that an individual mode is only active in places

where it is “sufficiently justified” (i.e., the increased data fidelity outweighs the incurred

friction cost), and represent the prior on modes to have limited spatial support and regular

outlines.
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3.3 Model relaxation

Due to the introduction of the binary support functions Ak in the fidelity constraint, and the

L1-based prior terms, the functional is no longer directly translatable to the spectral domain.

Moreover, the L1-terms do not lend themselves to standard calculus of variations methods,

directly. Instead, we propose an ensemble of splitting techniques [Coh96, CP11, GL89] that

have been applied to L1-based and related optimization problems with great success, such

as [EZB14, GO09, ZBT14].

First, we would like to restore spectral solvability of the modes uk. Currently, the masks

Ak prevent this, since in the quadratic penalty addressing the reconstruction constraint,

the spatial multiplication translates to spectral convolution. Spectral solvability for uk is

restored by introducing a splitting of the modes uk = vk, and applying spectral bandwidth

penalty and reconstruction over the separate copies:

min
uk : Rn→R, Ak : Rn→{0,1}, ~ωk∈Rn

{∑
k

αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1

}

s.t. ∀~x ∈ Rn :


uk(~x) = vk(~x),∑

k Ak(~x)vk(~x) = f(~x).

(3.3)

The splitting constraint can be addressed with a quadratic penalty (proximal splitting,

[CP11]), or using an augmented Lagrangian [GL89]. As an intermediate illustration, and

since the latter includes the former, we give the full saddle-point functional (augmented La-

grangian) incorporating both equality constraints through quadratic penalty and Lagrangian

multipliers, in analogy to (2.6):
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L({uk}, {vk}, {Ak}, {ωk}, λ, {λk}) :={∑
k

αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1 + ρ

∥∥∥f(~x)−
∑

Ak(~x)vk(~x)
∥∥∥2

2

+
〈
λ(~x), f(~x)−

∑
Ak(~x)vk(~x)

〉
+
∑
k

ρk ‖uk(~x)− vk(~x)‖2
2 + 〈λk(~x), uk(~x)− vk(~x)〉

}
,

(3.4)

where λk are the Lagrangian multipliers associated with the K equality constraints uk = vk,

and ρ, ρk are parameters weighting the different quadratic penalties. All terms involving uk

translate nicely into the spectral domain, while all terms in vk lend themselves to efficient

point-wise optimization in time domain. Before actually looking at the specific submini-

mization problems, we want to study the L1-terms further by recognizing them as essentially

balloon and motion-by-mean-curvature forces acting on the binary support functions Ak.

3.4 Excursion on MBO

The first variation associated with the TV-term is proportional to div(∇Ak/|∇Ak|). One can

expect difficulties with this term, for example in flat regions where |∇Ak| → 0. Moreover, if

the gradient descent PDE is integrated explicitly, then the time step is also heavily limited

by the Courant-Friedrich-Lewy (CFL) condition [CFL28].

An important contribution stems from the diffusion-threshold scheme for approximating

motion by mean curvature proposed by Merriman, Bence, and Osher (MBO) [MBO94]. The

fundamental idea is to reproduce the motion by mean curvature due to the boundary-length

term TV (Ak) by more efficient means than direct gradient descent.

Since Ak is binary we opt for alternative schemes other than split-Bregman/shrinkage or dual

minimization [Cha04, GO09, ZWC10]. As a preliminary, motivational step, let us replace
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the total variation of the support function Ak, by the real Ginzburg-Landau (GL, also known

as Allen-Cahn) functional [Mod87]:

Eε
GL(Ak) := ε

∫
Ω

|∇Ak(~x)|2d~x+
1

ε

∫
Ω

W (Ak(~x))d~x, ε > 0, (3.5)

where W (s) is a double-well potential with two equal minima at s = 0 and s = 1, for example

W (s) := s2(1− s)2. Minimizing this functional yields a phase field that is smooth and tends

to be binary. In particular, it has been shown [Mod87] that the GL-functional Γ-converges

to the total variation functional of binary phase-fields Ak ∈ {0, 1} as ε→ 0:

E0
GL(Ak) = σ(W )

∫
Ω

|∇Ak|, (3.6)

where σ(W ) is a surface tension term depending on the double well potential. The minimizing

flow of this functional for ε→ 0+ produces motion by mean curvature of the interface, which

is exactly what one needs in the spatially sparse VMD model minimization. However, now,

the PDE associated with the GL-functional minimization is

∂Ak
∂t

= 2ε∇2Ak −
1

ε
W ′(Ak), (3.7)

and this PDE is conveniently solved in a discrete-time two step time-splitting approach:

1. Propagate Ak according to the heat equation,

∂Ak
∂t

= 2ε∇2Ak

2. Propagate Ak according to the double well potential gradient descent,

∂Ak
∂t

= −1

ε
W ′(Ak).

The heat equation is efficiently solved, e.g., based on convolution or spectral transforms

[Ruu98].

Now, the MBO-scheme [MBO94] improves on this time-split GL-optimization in that the

ODE is recognized as essentially performing thresholding. While the first step is reduced
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to propagation according to the standard heat equation, the second step in MBO is actual

thresholding (projection onto the binary set {0, 1}):

1. Propagate Ak according to the heat equation,

∂Ak
∂t

= ∇2Ak

2. Rectify Ak by thresholding:

Ak(~x) =


0 if Ak(~x) ≤ 1

2

1 if Ak(~x) > 1
2

∀~x ∈ Rn

These MBO threshold dynamics have already been successfully integrated with imaging

data terms, such as [ET06, ZAS15], where in addition to the heat diffusion and thresholding

steps, a data-driven gradient descent step is included in the iterations. We propose a similar

structure here, to account for the balloon force and reconstruction fidelity term contributions

to the Ak minimization.

3.5 n-D-TV-VMD Minimization

Based on the preparatory steps of the preceding sections, we now propose to solve the

constraint, sparsity promoting n-D VMD functional (3.2) through its augmented Lagrangian

(3.4). Consider the following saddle point problem:

min
uk,vk : Rn→R, Ak : Rn→{0,1}, ~ωk∈Rn

max
λ,λk : Rn→R

{
L({uk}, {vk}, {Ak}, {ωk}, λ, {λk})

}
. (3.8)

This saddle point problem is an extended version of the 2D VMD saddle point problem (2.7)

(without spatial sparsity promoting terms), and is again efficiently solved through alternate
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direction minimization and dual ascent (ADMM):

ut+1
k ← arg min

uk : Rn→R

L
({
ut+1
i<k

}
, uk,

{
uti>k

}
,
{
vti
}
,
{
Ati
}
,
{
ωti
}
, λt,

{
λti
})

(3.9a)

vt+1
k ← arg min

vk : Rn→R

L
({
ut+1
i

}
,
{
vt+1
i<k

}
, vk,

{
vti>k

}
,
{
Ati
}
,
{
ωti
}
, λt,

{
λti
})

(3.9b)

At+1
k ← arg min

Ak : Rn→{0,1}

L
({
ut+1
i

}
,
{
vt+1
i

}
,
{
At+1
i<k

}
, Ak,

{
Ati>k

}
,
{
ωti
}
, λt,

{
λti
})

(3.9c)

~ωt+1
k ← arg min

~ωk∈Rn

L
({
ut+1
i

}
,
{
vt+1
i

}
,
{
At+1
i

}
,
{
~ωt+1
i<k

}
, ~ωk,

{
~ωti>k

}
, λt,

{
λti
})

(3.9d)

λt+1 ← λt + τ
(
f −

∑
At+1
k vt+1

k

)
(3.9e)

λt+1
k ← λtk + τk

(
ut+1
k − vt+1

k

)
(3.9f)

We provide details on the individual sub-minimization problems in the following paragraphs.

The complete algorithm for n-D-TV-VMD functional (with spatial sparsity promoting terms)

is then easily derived in analogy to algorithm 2.

3.5.1 Subminimization w.r.t. uk

The relevant minimization problem (3.9a) with respect to the modes uk reads

ut+1
k = arg min

uk : Rn→R

{
αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+ ρk

∥∥∥∥uk(~x)− vk(~x) +
λk(~x)

ρk

∥∥∥∥2

2

}
. (3.10)

In full analogy to the problem without spatial sparsity terms, (2.10), the update is most

easily computed in spectral domain, like (2.16). Unsurprisingly, the update rule on the

frequency halfspace Ωk = {ω | 〈ω, ωk〉 ≥ 0} is found to be:

ût+1
k (~ω) = (ρkv̂k − λ̂k)

1

ρk + 2αk|ω − ωk|2
, ∀ω ∈ Ωk. (3.11)
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From this half-space update, the full spectrum can again be obtained by Hermitian comple-

tion; Or by updating the mode’s half-space analytic signal instead:

ût+1
AS,k(~ω) = (ρkv̂k − λ̂k)

1 + sgn(〈ω, ωk〉)
ρk + 2αk|ω − ωk|2

. (3.12)

3.5.2 Subminimization w.r.t. vk

The update (3.9b) of vk reduces to the following minimization problem:

vt+1
k = arg min

vk : Rn→R

{
ρ

∥∥∥∥f(~x)−
∑

Ai(~x)vi(~x) +
λ(~x)

ρ

∥∥∥∥2

2

+ ρk

∥∥∥∥uk(~x)− vk(~x) +
λk(~x)

ρk

∥∥∥∥2

2

}
(3.13)

This problem admits the following pointwise Euler-Lagrange equations:

−ρAk(~x)

(
f(~x)−

∑
Ai(~x)vi(~x) +

λ(~x)

ρ

)
− ρk

(
uk(~x)− vk(~x) +

λk(~x)

ρk

)
= 0, ∀~x ∈ Rn

(3.14)

yielding the simple update rule

vt+1
k (~x) =

ρAk(~x)
(
f(~x)−∑i 6=k Ai(~x)vi(~x) + λ(~x)

ρ

)
+ ρkuk(~x) + λk(~x)

ρAk(~x)2 + ρk
, ∀~x ∈ Rn. (3.15)

This update is interpreted as a balance between fidelity to the split mode uk (enforced

through Lagrangian multiplier λk), and the reconstruction fidelity constraint where Ak is

active (enforced through λ).

3.5.3 Subminimization w.r.t. Ak

As outlined above, the minimization problem with respect to the binary support functions

Ak involves the L1-based priors:

At+1
k = arg min

Ak : Rn→{0,1}

{
βk‖Ak‖1 + γk‖∇Ak‖1 + ρ

∥∥∥∥f(~x)−
∑

Ai(~x)vi(~x) +
λ(~x)

ρ

∥∥∥∥2

2

}
. (3.16)

Motivated by successful implementation for image segmentation problems, for example, we

want to employ diffusion and threshold dynamics for the efficient solution of this problem. In
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analogy to the image segmentation scheme, we devise a three-fold time-split gradient descent

iteration: The first step is gradient descent based on the support area and reconstruction-

fidelity penalty. The second step is diffusion by the heat equation, followed by thresholding,

to deal with the boundary length term and the projection on the admissible set {0, 1}.

Since Ak is non-negative, it is safe to drop the absolute value and relax the L1-area term to

βk
∫
Rn Ak. This makes the functional smoothly differentiable in the area and reconstruction

term.

We thus propose to update the binary support functions At+1
k in MBO-like fashion [ET06,

MBO94, ZAS15] by iterating over the following three evolution equations:

1. Area penalty and reconstruction fidelity ODE:

∂Ak(~x)

∂t
= −βk + 2ρvk(~x)

(
f(~x)−

∑
Ai(~x)vi(~x) +

λ(~x)

ρ

)
, (3.17)

2. Heat equation PDE for diffusion:

∂Ak(~x)

∂t
= γk∇2Ak(~x), (3.18)

3. Rectification by thresholding:

Ak(~x) =


0 if Ak(~x) ≤ 1

2

1 if Ak(~x) > 1
2

∀~x ∈ Rn. (3.19)

Note that the ODE problem can be addressed through an implicit (backward) Euler scheme,

and the heat equation PDE is efficiently solved spectrally.

3.5.4 Subminimization w.r.t. ωk

The last, remaining sub-problem of the saddle-point problem (3.8) is the update of the

mode’s central frequency, ωk. The relevant portion of the functional (3.4) is identical to the
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non-sparse 2D-VMD model (2.6). Therefore the corresponding subminimization problem

here is identical to (2.18), and thus the update is equally given by (2.22).

The complete algorithm for the ADMM optimization of the 2D-TV-VMD model is shown in

algorithm 3, and illustrative examples of its use are given in figures 7.1 and 7.2.

Algorithm 3 2D-TV-VMD (sparsity promoting)

1: Input: signal f(~x), number of modes K, parameters αk, βk, γk, ρ, ρk, t, τ , τk, ε.

2: Output: modes uk(~x), support functions Ak(~x), center frequencies ~ωk.

3: Initialize {ω0
k}, {u0

k} ← 0, {v0
k} ← 0, {A0

k} ← 1, {λk}0 ← 0, λ0 ← 0, n← 0

4: repeat

5: n← n+ 1

6: for k = 1 : K do

7: Create 2D mask for analytic signal Fourier multiplier:

Hn+1
k (~ω)← 1 + sgn(〈~ωnk , ~ω〉)

8: Update ûAS,k:

ûn+1
AS,k(~ω)← Hn+1

k (~ω)

[
ρkv̂

n
k (~ω)− λ̂nk(~ω)

ρk + 2αk|~ω − ~ωnk |2

]

9: Retrieve uk:

un+1
k (~x)← <

(
F−1

{
ûn+1
AS,k(~ω)

})
10: Update vk:

vn+1
k (~x)←

ρAnk(~x)

(
f(~x)−∑

i<k

Ani (~x)vn+1
i (~x)−∑

i>k

Ani (~x)vni (~x) + λn(~x)
ρ

)
+ ρku

n+1
k (~x) + λnk(~x)

ρAnk(~x)2 + ρk
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Algorithm 3 2D-TV-VMD (sparsity promoting) (continued)

11: Update Ak through modified MBO:

A
n+1/3
k (~x)← 1

1 + 2tρ(vn+1
k (~x))2

(
Ank(~x) + t

(
−βk + 2ρvn+1

k (~x)

(
f(~x)−

∑
i<k

An+1
i (~x)vn+1

i (~x)

−
∑
i>k

Ani (~x)vni (~x) +
λn(~x)

ρ

))

Â
n+2/3
k (~ω)← Â

n+1/3
k (~ω)

1 + tγk|~ω|2

An+1
k (~x)←


0 if A

n+2/3
k (~x) ≤ 1

2

1 if A
n+2/3
k (~x) > 1

2

12: Update ~ωk:

~ωn+1
k ←

∫
R2 ~ω|ûn+1

AS,k(~ω)|2d~ω∫
R2 |ûn+1

AS,k(~ω)|2d~ω
13: Dual ascent u-v coupling:

λn+1
k (~x)← λnk(~x) + τk

(
un+1
k (~x)− vn+1

k (~x)
)

14: end for

15: Dual ascent data fidelity:

λn+1(~x)← λn(~x) + τ

(
f(~x)−

∑
k

An+1
k (~x)vn+1

k (~x)

)

16: until convergence
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CHAPTER 4

Spectral Image Segmentation

Up to now we have considered modes whose spatial support was mutually independent. In

particular, this means that VMD and TV-VMD modes can be spatially overlapping, and

conversely, that not all parts of a signal are covered by an active mode. Here, we want to

consider the case where modes are restricted to be non-overlapping while covering the entire

signal domain. In other words, the modes’ support functions Ak form a partition of the

signal domain. For example, such a model includes the image segmentation problem.

In terms of the binary support functions, Ak : Rn → {0, 1}, this means imposing the following

constraint: ∑
k

Ak(~x) = 1, ∀~x ∈ Rn. (4.1)

In return, the area penalty βk‖Ak‖1 is obsolete, of course, unless not all modes incur the

same area penalty due to different size priors, corresponding to βi 6= βj for at least some

(i, j) ∈ {1, . . . , K}2.

We propose the following spatially disjoint n-D-TV-VMD model, as a modification of (3.2):

min
uk : Rn→R, Ak : Rn→{0,1}, ~ωk∈Rn

{∑
k

αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1

}

s.t. ∀~x ∈ Rn :


∑

k Ak(~x)uk(~x) = f(~x),∑
k Ak(~x) = 1.

(4.2)
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Next we outline two different strategies to accommodate this extra constraint on the sup-

port functions in the minimization scheme. The first strategy incorporates the partitioning

constraint through another augmented Lagrangian to be included in the saddle point prob-

lem. The second model deals with the restricted solution space through projection, more

precisely by modifying the current rectification step included in the MBO-like diffusion and

threshold-dynamics.

4.1 Augmented Lagrangian method

In the first approach, we incorporate the segmentation constraint as a third augmented La-

grangian term. Based on the AL (3.4) of the spatially overlapping compact VMD functional

(3.2), we write:

L({uk}, {vk}, {Ak}, {ωk}, λ, {λk}) :={∑
k

αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1 + ρ

∥∥∥f(~x)−
∑

Ak(~x)vk(~x)
∥∥∥2

2

+
〈
λ(~x), f(~x)−

∑
Ak(~x)vk(~x)

〉
+
∑

ρk ‖uk(~x)− vk(~x)‖2
2 +

∑
〈λk(~x), uk(~x)− vk(~x)〉

+ ρ′
∥∥∥∑Ak(~x)− 1

∥∥∥2

2
+
〈
λ′(~x),

∑
Ak(~x)− 1

〉}
, (4.3)

where λ′ : Rn → R is the newly introduced Lagrangian multiplier, and ρ′ the weight of the

corresponding quadratic penalty term. Sticking to the alternate direction gradient descent

and dual ascent scheme (3.8) for optimization, we realize that all sub-optimization problems

remain unchanged, except for the Ak update and an additional dual ascent step.

The heat diffusion and thresholding steps are not affected by the extra terms in the functional.

Instead, the corresponding first variation is incorporated in the first, ODE step (3.17):

∂Ak(~x)

∂t
= −β+2ρvk(~x)

(
f(~x)−

∑
Ai(~x)vi(~x) +

λ(~x)

ρ

)
−2ρ′(

∑
Ak(~x)−1)−λ′(~x). (4.4)
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4.2 Projection: Multiphase MBO and rearrangement

Instead of the additional penalty and Lagrangian multiplier term, the partitioning constraint

can be dealt with by the rectification step in the MBO-like part. Indeed, the partitioning

problem corresponds to a multiphase interface problem. The fundamental idea is to prop-

agate the data-ODE (3.17) and the heat-diffusion PDE (3.18) on each support function Ak

individually, but to replace the individual thresholding step (3.19) by a single, common

“winner-takes-it-all” rectification. This idea has been discussed more rigorously in [EO15],

and is related to the rearrangement algorithm for the discrete graph partitioning problem

[OWO14].

The projection-based partitioning update for Ak becomes:

1. Area penalty and reconstruction fidelity ODE propagation for each mode k, according

to (3.17).

2. Heat diffusion PDE for each mode k according to (3.18).

3. “Winner-takes-it-all” rectification; Projection of the intermediate Ak on the feasible

set Ak ∈ {0, 1} ∩
∑
Ak = 1:

At+1
k =


1 if k = arg maxiAi,

0 otherwise.

(4.5)

For an application of the same strategy to graph-based image processing, see [GMB14,

HSB14]. The modified 2D-TV-VMD algorithm with segmentation constraint is given in

algorithm 4, while illustrative examples are shown in figures 7.3 et seqq.
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Algorithm 4 2D-TV-VMD with segmentation constraint

1: Input: signal f(~x), number of modes K, parameters αk, βk, γk, ρ, ρk, t, τ , τk, ε.

2: Output: modes uk(~x), domain partitioning support functions Ak(~x), center frequencies

~ωk.
3: Initialize {ω0

k}, {u0
k} ← 0, {v0

k} ← 0,{A0
k} ← 1, {λk}0 ← 0, λ0 ← 0, n← 0

4: repeat

5: n← n+ 1

6: for k = 1 : K do

7: Create 2D mask for analytic signal Fourier multiplier:

Hn+1
k (~ω)← 1 + sgn(〈~ωnk , ~ω〉)

8: Update ûAS,k:

ûn+1
AS,k(~ω)← Hn+1

k (~ω)

[
ρkv̂

n
k (~ω)− λ̂nk(~ω)

ρk + 2αk|~ω − ~ωnk |2

]

9: Retrieve uk:

un+1
k (~x)← <

(
F−1

{
ûn+1
AS,k(~ω)

})
10: Update vk:

vn+1
k (~x)←

ρAnk(~x)

(
f(~x)−∑

i<k

Ani (~x)vn+1
i (~x)−∑

i>k

Ani (~x)vni (~x) + λn(~x)
ρ

)
+ ρku

n+1
k (~x) + λnk(~x)

ρAnk(~x)2 + ρk

11: Update ~ωk:

~ωn+1
k ←

∫
R2 ~ω|ûn+1

AS,k(~ω)|2d~ω∫
R2 |ûn+1

AS,k(~ω)|2d~ω
12: Dual ascent u-v coupling:

λn+1
k (~x)← λnk(~x) + τk

(
un+1
k (~x)− vn+1

k (~x)
)

13: end for
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Algorithm 4 2D-TV-VMD with segmentation constraint (continued)

14: for k = 1 : K do

15: Update Ak through time split ODE and PDE propagation:

A
n+1/3
k (~x)← 1

1 + 2tρ(vn+1
k (~x))2

(
Ank(~x) + t

(
− βk + 2ρvn+1

k (~x)
(

(f(~x)−
∑
i<k

A
n+2/3
i (~x)vn+1

i (~x)

−
∑
i>k

Ani (~x)vn+1
i (~x) +

λn

ρ

)))
Âk

n+2/3
(~ω)← Â

n+1/3
k (~ω)

1 + tγk|~ω|2

16: end for

17: for k = 1 : K do

18: Rectify Ak through winner-takes-it-all:

An+1
k (~x) =


1 if k = arg maxiA

n+2/3
i (~x)

0 otherwise

19: end for

20: Dual ascent data fidelity:

λn+1(~x)← λn(~x) + τ

(
f(~x)−

∑
k

An+1
k (~x)vn+1

k (~x)

)

21: until convergence
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CHAPTER 5

Lattice Segmentation

Until now, our decomposition associates one spatial characteristic support function, Ak, with

only one intrinsic mode function, uk. This results in a simple decomposition where each spa-

tial region has exactly one simple oscillation. Let us now consider a case where the image is

composed of regions not corresponding to plane waves, but combinations of simple oscilla-

tory patterns, such as a checkerboard or hexagonal pattern. Microscopy of single-molecule

layers, colloids, and crystal grains have such patterns. In biochemistry and nanoscience, the

decomposition of such microscopy images into regions of homogeneity provides a necessary

mechanic for further downstream analyses.

In microscopy, a crystal image contains different mesoscopic grains, where each grain typ-

ically can be a homogeneous, lattice region. Each grain has different spatial periodicities,

depending on the crystal lattice structure. These structures are modelled by Bravais lattices,

which, depending on the 2D crystalline arrangement, come in five forms: oblique, rectan-

gular, centered rectangular, hexagonal, and square. Thus a grain’s Fourier spectrum has

several distinct peaks, associated with the various cosine waves that constitute the pattern,

which share a common spatial support (function). For example, a grain in a homogeneously

hexagonal lattice patch would have three coupled peaks in the spectral half-space. Grains

differ by orientation, so it is interesting to find the grain supports, their boundaries and

defects, and the Fourier peaks associated with each grain. A crystal image composed of such

grains can be considered as an assemblage of 2D general intrinsic mode type functions with

non-overlapping supports, specified propagating directions and smoothly varying local wave
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vectors. A recent state-of-the-art method uses 2D synchrosqueezed transforms together with

slow-oscillating, global-structure providing functions, known as shape functions, in order to

model atomic crystal images [YLY14]. In general, knowing the Bravais lattice structure

yields strong priors on the relative positions of the frequency peaks; here, however, we only

make use of the known number of peaks, but not their relative positions.

To accommodate such regions, our spectral image segmentation needs to be adapted to allow

for multiple single-Fourier-peak modes to be joined together through a single binary support

function. Let {ukj}j denote the set of modes associated with the single binary support

function Ak. Each of these modes needs to be individually of small bandwidth, but they

contribute to the signal reconstruction jointly through their single support function Ak. This

simple modification allows us to segment signals into meaningful pieces.

To this end, we modify the spatially disjoint n-D-TV-VMD model (4.2) as follows:

min
uki : Rn→R, Ak : Rn→{0,1}, ~ωki∈Rn

{∑
k,i

αki
∥∥∇ [uAS,ki(~x)e−j〈~ωki,~x〉

]∥∥2

2
+
∑
k

βk‖Ak‖1+
∑
k

γk‖∇Ak‖1

}

s.t. ∀~x ∈ Rn :


∑

k Ak(~x)
∑

i uki(~x) = f(~x),∑
k Ak(~x) = 1.

(5.1)

We call this the n-D-TV-VMD lattice segmentation model. The model can be optimized in

much the same way as the simpler model (4.2). The only significant difference is in the ODE

propagation step of the Ak update: Here, all associated modes uki (resp. their copies vki)

jointly influence the update of the single Ak. Indeed, (3.17) now becomes:

∂Ak(~x)

∂t
= −β + 2ρ

(∑
i

vki(~x)

)(
f(~x)−

∑
l

Al(~x)
∑
j

vlj(~x) +
λ(~x)

ρ

)
. (5.2)

Explicitly modifying the previous algorithms to incorporate this submode coupling is fairly

straightforward and left as an exercise to the reader. Examples of image decomposition with

submode coupling are shown in figures 7.7–7.10.
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CHAPTER 6

Outlier Detection: Artifact Detection and Inpainting

As a final complication regarding crystallography images, we now wish to deal with image

features that cannot be explained by the VMD model thus far, such as defects and artifacts.

While artifacts can be due to acquisition noise or sample impurities (accidental or intended),

defects are irregularities in the regular crystal structure, within crystal grains, or more

frequently at the grain boundaries. In imaging terms, these are characterized by a stark

deviation from the regular spatial pattern modeled by the band-limited modes of the VMD

model. In the presence of imaging noise, one naturally relaxes the data-fidelity constraint by

just a quadratic penalty, i.e., not making use of a Lagrangian multiplier. Therefore, unless

otherwise accounted for, such defects and artifacts appear in the data-fidelity residual, but

due to their non-Gaussian nature as strong outliers will also affect and deteriorate the mode

decomposition. It is imperative, therefore, to address these features more specifically beyond

making Gaussian noise assumptions.

6.1 Artifact indicator function

Recently, a dynamic artifact detection model was introduced in the framework of classical

Chan-Vese image segmentation [ZAS15]. There, individual pixels were eliminated from the

region-based segmentation terms to prevent skewing and misleading the segmentation. This

method is related to similar approaches in occlusion detection in optical flow [ARS11] and

salt-and-pepper denoising [Yan13]. Here, the goal is to isolate defects and artifacts from
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interfering with the regular modes.

We introduce an artifact indicator function,

χ : Rn → {0, 1},

where for each pixel a 1 denotes an artifact, and 0 absence thereof. We use this artifact

indicator function to limit the data-fidelity constraint to non-artifact regions, only, e.g.,

∀~x ∈ Rn | χ(~x) = 0:
∑
k

Ak(~x)uk(~x) = f(~x). (6.1)

This is equivalent to

∀~x ∈ Rn :
∑
k

(1− χ(~x))Ak(~x)uk(~x) = (1− χ(~x))f(~x), (6.2)

where (1 − χ(~x)) = 1 in regions not classified as artifacts, which is where data fidelity is

to be enforced. A similar modification can be made to all data-fidelity constraints of the

previous models.

6.2 Defect and artifact detection and inpainting

We have not described, so far, how the values of the binary defect and artifact indicator

function χ are to be determined, in the first place. While there are reasonable grounds to

believe that these defect and artifact locations could be heuristically identified from images in

preprocessing, we want to integrate this detection process into the very same decomposition

model.

At this point, we do not have a concise and simple characterization of the shape and ap-

pearance of defects and artifacts, and for the general case we even want to avoid including

too many such priors. Instead, we characterize lattice defects and image artifact locations

by what they are not; indeed, at these locations the image simply fails to be sufficiently well

modeled by the band-limited modes extracted nearby. We thus decide to classify a certain
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pixel f(~x) as an artifact or defect, χ(~x) = 1, if the incurred data-fidelity cost would be too

large, locally, otherwise. This is most simply achieved by including an L1-term on χ.

We modify the constrained n-D-TV-VMD cost functional (3.2) to become the n-D-TV-

XVMD (with artifact detection) functional as follows:

min
uk : Rn→R, Ak,χ : Rn→{0,1}, ~ωk∈Rn

{∑
k

αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+βk‖Ak‖1+γk‖∇Ak‖1+δ‖χ‖1

}
s.t. ∀~x ∈ Rn :

∑
k

(1− χ(~x))Ak(~x)uk(~x) = (1− χ(~x))f(~x). (6.3)

The corresponding unconstrained saddle point problem (without Lagrange multiplier on the

data-fidelity) then becomes:

L({uk}, {vk}, {Ak}, {ωk}, χ, {λk}) :={∑
k

αk
∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉

]∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1 + δ‖χ‖1

+ρ
∥∥∥(1− χ(~x))(f(~x)−

∑
Ak(~x)vk(~x))

∥∥∥2

2
+
∑
k

ρk ‖uk(~x)− vk(~x)‖2
2 + 〈λk(~x), uk(~x)− vk(~x)〉

}
.

(6.4)

It is important to note that the masking only impacts the data-fidelity evaluation domain,

while all other terms are not affected. Indeed, only two sub-minimization steps will be altered

by the introduction of the (1− χ)-term:

1. the area penalty and reconstruction fidelity ODE (3.17) will collapse to just ∂tAk(~x) =

−βk whenever χ(~x) = 1 (and remain unchanged, otherwise). In particular, the TV- and

L1-terms on the binary support functions Ak will now exclusively drive the evolution of

the latter whenever a location is marked as artifact, since the data-fidelity constraint

is the only link between modes and support functions.

2. Similarly, the update (3.15) of vk collapses to vt+1
k (~x) = uk(~x) +λk(~x)/ρk when χ(~x) =

1, which effectively unlinks the local mode estimate from the observed data and simply

in-paints the artifact regions by Fourier interpolation of the modes.
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On the other hand, the estimation of the artifact indicator function χ itself also leads to a

straightforward optimization step. The binary optimization can be carried out independently

for each pixel, and the optimal χ∗(~x) chooses between paying data-fidelity penalty versus

artifact cost δ, as follows:

χ∗(~x) =


0 if ρ(f(~x)−∑Ak(~x)vk(~x))2 ≤ δ

1 otherwise

(6.5)

This thresholding scheme has an immediate interpretation from a hypothesis-testing perspec-

tive. Indeed, if we consider the data-fidelity weight ρ to be the precision of the implicitly

assumed Gaussian noise distribution, then the expression ρ(f(~x)−∑Ak(~x)vk(~x))2 represents

the squared z-score (standard score) of the local image intensity under such a noise distri-

bution. This squared z-score is compared against the threshold δ. The artifact classification

is effectively a concealed statistical hypothesis z-test of the pixel intensity with a Gaussian

distribution

p(f(~x)) = N (f(~x) |
∑

Ak(~x)vk(~x), ρ−1)

as null-hypothesis H0, and a pixel is classified as an artifact (H1) if the z-score of its intensity

is more extreme than
√
δ. The model parameter δ is thus intimately related to the level of

statistical significance attached to the artifact classification and its expected false positives

rate.

Again, in the interest of conciseness, we leave the modification of the algorithms to include

the artifact detection and inpainting terms as an exercise for the reader. An inpainting

example is illustrated in figure 7.6.
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CHAPTER 7

Experiments and Results

We have implemented the above three algorithms 2–4, including the submode coupling of

section §5 and the artifacts detection and inpainting (§6) extensions, in MATLAB R©. The

algorithms can be implemented in a single code file, because they are mostly generalizations

of each other.

In the implementation, we make two deliberate choices that have not been discussed, so far.

The first choice is with respect to initialization of the center frequencies, where we include

four options:

1. initialization of frequencies uniformly spread on a circle (deterministic),

2. random initialization on the positive half-space,

3. user selection through graphical user interface, and

4. user input as parameters.

Unless otherwise noted, all the examples shown below make use of the deterministic radial

frequency initialization scheme.

The second particularity is with respect to model selection 2D-VMD, 2D-TV-VMD, and

2D-SEG-VMD. Indeed it is useful in practice to initialize the TV-VMD model by some

iterations of unrestricted 2D-VMD, in order to settle the center frequencies close to the

optimal location; and similarly, the segmentation model is best initialized based on the

78



outcome of 2D-TV-VMD optimization. We will thus always start optimizing in 2D-VMD

mode, and over the iterations, switch to the two more complicated models at user-defined

time-points (which may be set to infinity, thereby producing results of simpler models as

final output).

Our implementation is publicly available for download at http://www.math.ucla.edu/

~zosso/code.html, and on MATLAB Central.

7.1 Synthetic overlapping texture decomposition

The first, synthetic image is a composition of spatially overlapping basic shapes, more pre-

cisely six ellipses and a rectangle, with frequency patterns varying in both periodicity and

direction, courtesy of J. Gilles [Gil12]. The spectrum is ideal for segmentation due to modes

being deliberately both well spectrally isolated and narrow-banded. The resolution of the

synthetic image is 256× 256.

We feed the synthetic image to our models and show the resulting decompositions for both

2D-VMD and 2D-TV-VMD models in figure 7.1. The parameters are1:

K αk βk γk δ ρ ρk τ τk t

5 1000 0.5 500 ∞ 10 10 2.5 2.5 1.5

In addition, the center frequency of the first mode is held fixed at ω1 = 0 to account for

the DC component of the image. As a result, the first mode contains the solid ellipse and

rectangle, while the four remaining decompositions in figure 7.1 show clear separation of the

patterned ellipses.

In the simple 2D-VMD model of figure 7.1(e), due to the solid pieces having sharp edges, their

1Of course, the simpler 2D-VMD model only uses a subset of these parameters, for the support functions
are fixed at Ak = 1 uniformly.
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spectra are not band-limited and only smoothed versions are recovered. This is naturally

paired with the two lower frequency modes absorbing residual boundary artifacts of the DC

component, and ghost contours appearing in these modes.

The spatially compact 2D-TV-VMD model, figure 7.1(f)–(h), however, can handle sharp

boundaries through the support functions Ak, while the modes uk can smoothly decay. The

resulting masked modes, Akuk, are thus clean and sharp.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.1: Synthetic overlapping texture (a) Input image f . (b) 2D-VMD reconstruction∑
k uk. (c) Compactly supported 2D-TV-VMD reconstruction

∑
k Akuk. (d) Support bound-

aries overlaid onto original image. (e) 2D-VMD modes uk. (f) 2D-TV-VMD modes uk. (g)

Detected supports Ak. (h) Masked modes Akuk.
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7.2 Overlapping chirps

The second example problem is still synthetic, but the modes have non-trivial Fourier sup-

port. More precisely, the synthetic image is a superposition of three compactly supported

yet spatially overlapping 2D chirps (see figure 7.2). Starting from radial initialization, we

let our algorithm determine the correct support and appropriate center frequencies for this

problem, based on the following parameters:

K αk βk γk δ ρ ρk τ τk t

3 2000 1 1000 ∞ 7 10 1 1 1

(a) (b)

(c) (d)

Figure 7.2: Chirp decomposition. (a) Input signal f . (b) 2D-TV-VMD modes uk. (c) Fourier

spectrum f̂ . (d) Determined supports Ak. See §7.2.

The resulting decomposition is accurate with only little error on the true support functions.

The modes are spectrally clean. It is interesting to observe how our model extrapolates the

modes outside their rectangular domain boundaries. Note that the decay distance correlates

with the wave-length of the mode.
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7.3 Textural segmentation for denoising

The two examples encountered so far were noise-free and perfect reconstruction was possible

through the use of Lagrange multipliers (τ, τk > 0). In the presence of noise, however,

enforcing strict data fidelity may be inappropriate, and instead relying on just the quadratic

penalty to promote data-fidelity is the proper way to go. This is easily achieved by preventing

the Lagrangian multipliers from updating: τ, τk = 0. As a result, the noise can be handled

with a residual slack between the splitting variables. In particular, the quadratic penalty

term corresponds to a Gaussian noise assumption, where the penalty coefficients ρ, ρk relate

to the noise precision.

Here, we explore the idea of using the slack in the absence of Lagrangian multipliers for

denoising based on spectral sparsity. To this end, we construct a four-quadrant, non-

overlapping unit-amplitude cosine-texture image with different levels of noise, shown in fig-

ure 7.3. Because the quadrants are non-overlapping, we are interested in the output of the

2D-SEG-VMD model using the following parameters:

K αk βk γk δ ρ ρk τ τk t

4 3500 1.5 750 ∞ 7 10 0 0 1

Without the Lagrangian multipliers active, it is important to realize that the two copies of

the modes, uk and vk, may be different; and that uk is the potentially cleaner copy of the

two.

In figure 7.3, we can see that even for important noise levels, the partition is recovered

with good precision (red contours). In addition, the recovered composite of the four masked

modes is very clean, seemingly irrespective of the degrading noise level.
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σ = 0 σ = 0.1 σ = 0.2 σ = 0.5 σ = 1

Figure 7.3: Denoising. Noise standard deviation σ. Top: noisy f with detected phase borders

(red). Bottom: denoised signal
∑

k Akuk. See §7.3.

7.4 Segmentation of peptide β-sheets

The next test case are two scanning tunneling microscopy (STM) images of peptide β-sheets

bonding on a graphite base, courtesy of the Weiss group at the California NanoSystems

Institute (CNSI) at UCLA, [CTS13]. The peptide sheets grow in regions of directional

homogeneity and form natural spatial boundaries where the regions meet. It is important to

scientists to have accurate segmentation for their dual interests in complementary analysis of

the homogeneous regions and their boundaries. Identifying regions of homogeneity enables

the subsequent study of isolated peptide sheets of one particular bonding class. For these

types of scans, manually finding the boundaries is a tedious problem that demands the

attention of a skilled scientist on a rote task. In addition to speed and automation, the

proposed 2D-VMD is superior in accuracy to manual boundary identification due to regions

potentially having very similar patterns, of which the orientation differs by only a few degrees,

difficult to discern by eye.

Nanoscale images such as these are a useful testbed since data are often oversampled relative
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to the smallest observable features, atoms and molecular parts. Also, segmentation in one

imaging modality can be used to guide segmentation or data acquisition in a complementary

imaging mode [BBB12, CSW11, HKG09, MYY10, TSH15].

The first example, shown in figure 7.4, is a 512 × 512 false-color image, of which we only

consider the average intensity across color channels as a proxy, in lieu of the actual raw data

produced by the microscope. Also, as classical pre-processing step, we apply a Laplacian of

Gaussians (LoG) band-pass filter to the image in order to remove both some noise and the

DC component. Expert inspection suggests that there are six different grain orientations

represented in this image. We perform 2D-VMD, 2D-TV-VMD, and 2D-SEG-VMD using

these parameters:

K αk βk γk δ ρ ρk τ τk t

6 2000 1 250 ∞ 7 10 0 0 2.5
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(a) (b) (c)
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(d) (e) (f)

Figure 7.4: Scanning tunneling microscopy (STM) image of peptide β-sheets, 512× 512 (I).

(a) Input f . (b) 2D-TV-VMD boundaries (red). (c) 2D-SEG-VMD partition (red). (d)

2D-VMD modes uk. (e) 2D-TV -VMD modes Akuk. (f) 2D-SEG-VMD modes Akuk. See

§7.4 in the text for details and discussion.

The recovered modes are shown in figure 7.4(d)–(f). The unconstrained 2D-VMD model

produces overly smooth modes without clear boundaries. The compactly supported 2D-TV-

VMD model yields modes with sharp delineation. As can be seen from the grain boundaries
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overlaid to the input image, in figure 7.4(b), the modes are not overlapping, but do not

cover the entire image domain, leaving unaccounted space at the grain boundaries. This

problem is effectively addressed by the addition of the segmentation constraint, as seen by

the boundaries in 7.4(c).

The second example, shown in figure 7.5, is believed to consist of only three main grain

orientations. This 512 × 512 image is of the same type as the previous example and pre-

processed in the same way. The image exhibits strong singular spots due to additional

material deposition on the sample surface. In order to address these outliers, we make use

of the artifact detection and inpainting extension, for δ finite:

K αk βk γk δ ρ ρk τ τk t

3 2000 1 75 3.5 7 10 0 0 2.5
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: STM of peptide β-sheets, 512×512 (II). (a) Input f . (b) 2D-SEG-VMD partition

(red). (c) Partition (red) with enabled artifact detection (cyan). (d) 2D-VMD modes uk. (e)

2D-SEG-VMD modes Akuk. (f) Modes obtained with artifact detection enabled. See §7.4

for details. 89



While the singular deposits (“artifacts”) negatively impact the mode purity for both 2D-

VMD and 2D-TV-VMD (figure 7.5(d)–(e)), this effect is partially alleviated by the automatic

detection and inpainting capability of the artifacts-extension (figure 7.5(f))2. In addition to

the outlined grain boundaries (red), the location of the detected artifacts is highlighted in

cyan, in figure 7.5(c). Note that the artifact detection also allows spotting at least some of

the grain defects, in addition to the deposits.

7.5 Inpainting

Here, we are interested in exploiting the model’s capability of intrinsically inpainting the

modes (and therefore the input image) in regions that are labeled as artifacts/outliers. To

this end, we construct a simple checkerboard image, which essentially corresponds to a su-

perposition of two cosine-waves with full support each. In addition, portions of the image

are corrupted by “pencil-scribble”, as shown in figure 7.6(a). We set up the model as a

two-modes 2D-VMD image decomposition problem, with a finite artifact detection thresh-

old. The data-fidelity Lagrangian is inactive in order to allow some slack (Gaussian noise

assumption) and artifact detection, while we maintain an active Lagrangian multiplier on

the u− v splitting:

K αk βk γk δ ρ ρk τ τk t

2 1500 n/a n/a 30 150 20 0 1 n/a

2Lower artifact threshold δ and higher TV-weight γk might increase the mode cleanliness even further.
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(a) (b)

(c) (d)

Figure 7.6: 2D-VMD inpainting. (a) Input image f . (b) Fourier spectrum f̂ . (c) Recovered

modes
∑

k uk. (d) Detected artifacts χ. See §7.5.

As can be seen in figure 7.6(c)–(d), the model succeeds well in detecting the scribble as

outliers. In the artifact-labeled image portions, the submodes are inpainted by intrinsic

Fourier-interpolation, and as a result, a full checkerboard can be recovered from the decom-

position.
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7.6 Textural segmentation: Lattices

We finally turn our attention to the segmentation of images with lattice texture, as ob-

served, for example in crystallography and microscopy images of crystalloid samples. The

fundamental assumed property of such images is that they consist of K different domains

(grains) forming a partition of the image, such that each grain has a distinct lattice texture

composed of a superposition of M different essentially wavelike sub-bands. As seen earlier,

a checkerboard lattice would consist of a superposition of M = 2 orthogonal cosine waves,

while a hexagonal lattice consist of M = 3 modes differing by 60 ◦ rotation. Our model allows

for multiple sub-modes uki to share a common support function Ak, and thus be spatially

coupled.

7.6.1 Checkerboard: 2 phases with 2 sub-modes

As a first simple example, we consider the composite of two checkerboard halves, of which

one is slightly rotated, as shown in figure 7.7(a). The goal is to find the support of two

phases, partitioning the 256× 256 image domain, and the respective two sub-modes for each

such grain. We run the 2D-SEG-VMD model with the following parameters:

K M αk βk γk δ ρ ρk τ τk t

2 2 2000 1 250 ∞ 7 10 0 0 2.5
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7: Lattice decomposition. (a) Input f . (b) Fourier spectrum f̂ . (c)–(d) Recovered

phases
∑

iAkuki. (e)–(f) Submodes uki. See §7.6.1.
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The resulting decomposition into the two checkerboard phases, Ak
∑

i uki, is shown in fig-

ure 7.7(c)–(d), while the constituting two sub-modes per phase, uki, are illustrated in fig-

ure 7.7(e)–(f).

7.6.2 Hexagonal lattice: 3 phases with 3 sub-modes

A slightly more complicated problem is illustrated in figure 7.8. We start with a tripartite

256 × 256 image, where each domain consists of an artificial hexagonal lattice pattern, ob-

tained by superposing three cosine waves rotated by 60 ◦ against each other. Each domain

has a slightly different lattice orientation (0 ◦, 15 ◦, 45 ◦). Like the previous example, this is a

2D-SEG-VMD problem, this time with three phases and three sub-modes, each. The other

parameters remain unchanged:

K M αk βk γk δ ρ ρk τ τk t

3 3 2000 1 250 ∞ 7 10 0 0 2.5
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(a) (b) (c)

(d)

Figure 7.8: 3 phase 3 modes. (a) Input f . (b) Fourier spectrum f̂ . (c) 2D-SEG-VMD

partition (red). (d) Phases Ak
∑

i uki. See §7.6.2.

As can be seen in figure 7.8(c)–(d), the recovered phases and their boundaries are very

precise. Note that this decomposition involves the identification of nine center frequencies

and associated wave functions, and the delineation of three support functions partitioning

the image domain.
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7.6.3 Simulated hexagonal crystal

The 3-phase-3-waves hexagonal lattice image of the previous sub-section was an idealized

synthetic version of what real world acquired images of hexagonally arranged crystal struc-

tures might look like. In an attempt to make the problem more realistic, we created a more

complicated synthetic lattice image as follows: We predefine a 5-partition of the 256 × 256

image domain. In each domain, individual pixels corresponding to approximate “bubble

locations” of the crystal lattice are activated. The exact center position is affected by dis-

cretization noise (the pixel locations are obviously limited to the Cartesian grid) as well as

additional, controllable jitter. The resulting “nail board” is then convoluted with a circu-

lar point spread function designed to mimic the approximate appearance of an individual

lattice element, and Gaussian white noise is added. An example is shown in figure 7.9(a).

Due to this construction the grain boundaries exhibit very irregular defects. All of these

complications make the resulting image much more interesting and challenging to segment.

In a first, simple attempt, we configure the 2D-SEG-VMD algorithm as follows:

K M αk βk γk δ ρ ρk τ τk t

5 3 2000 1 250 ∞ 7 10 1 1 2.5

In contrast to the actually noise-free preceding examples, here, we enforce data-fidelity

strictly by picking τ = τk = 1, so as to make sure the phases and modes pick-up the relevant

center frequencies and do not lazily get stuck in local minima (see a discussion in [DZ14]

for the role of the Lagrangian multipliers in low-noise regimes). The model is thus obliged

to over-explain all image noise (jitter and Gaussian noise) in terms of mode decomposition.

As a result, the obtained partition captures the five phases largely, but suffers from strong

noise, as shown in the middle of figure 7.9. Most importantly, though, this procedure found

the correct 5× 3 center frequencies.

These correctly identified center frequencies can now be used as a very strong prior when
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running the 2D-SEG-VMD model a second time, in a different regime with inactive La-

grangian multipliers to allow noise-slack. To this end, we use the obtained center frequencies

as user initialization for a second run, with parameters as follows:

K M αk βk γk δ ρ ρk τ τk t

5 3 2e4 1 500 ∞ 7 10 0 0 2.5

Now, the increased αk renders the modes more pure, and also keeps the center frequencies

from drifting too much, while the partition regularity is regularized slightly stronger (in-

creased γk). The main difference are the inactivated Lagrangian multipliers, relaxing the

data-fidelity constraint considerably. The resulting decomposition is shown in figure 7.9.

In the correctly initialized denoising regime we obtain a very accurate partition and much

cleaner crystal grain estimates.
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(a) (b) (c) (d) (e)

Figure 7.9: Simulated crystal lattice. 2D-SEG-VMD decomposition in two runs, first with,

then without Lagrangian multipliers. See §7.6.3 in text for details and discussion. (a) Input

image f . (b) Fourier spectrum f̂ . (c) First run reconstruction
∑

k,iAkuki. (d) Partition

(red) of second run. (e) Reconstruction of second run. Middle row: Phases obtained in first

run with with τ, τk > 0 to find correct ωki. Bottom row: Clean phases Ak
∑

i uik of second

run with τ = τk = 0 and well-initialized ωki.
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7.6.4 Colloidal image

As a last example problem, we consider a bright-field light microscopy image of 10µm-sized

spherical glass particles suspended in water3. These glass particles form a collection of small

2D colloidal crystals with grain boundaries between them. These grains have a hexagonal

lattice structure similar to the previously considered examples. For our purposes, the original

image is cropped, band-pass filtered with a LoG-filter, and downsampled to a final dimension

of 256× 256. The effective input image is shown in figure 7.10(a).

Visual inspection of the Fourier spectrum suggests that there are probably four different

grain orientations to be found in the image (see figure 7.10(b)). We thus configure the

2D-SEG-VMD model with the following parameter choice:

K M αk βk γk δ ρ ρk τ τk t

4 3 2000 1 250 ∞ 10 50 0.1 0.1 2.5

The resulting grain boundaries shown in figure 7.10(c) should be compared to computation-

ally determined lattice irregularities (grain boundaries, defects) in figure 7.10(d)4.

3Image used with permission, courtesy by Richard Wheeler, Sir William Dunn School of Pathology,
University of Oxford, UK.

4Ibid.
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(a) (b)

(c) (d)

Figure 7.10: Bright-field microscopy image of colloidal crystal and its segmentation. Individ-

ual beads are 10µm in diameter. See §7.6.4. (a) Cropped, LoG-filtered, and downsampled

input image f . (b) Fourier spectrum f̂ . (c) 2D-SEG-VMD 4-partition (red) overlaid on in-

put image. (d) Colloidal connectivity graph for comparison: white edges indicate hexagonal

alignment (six equally spaced neighbors) and that a particle is therefore part of a crystalline

domain (grain), while colored edges indicate grain boundaries and defects.
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CHAPTER 8

Conclusions and Outlook

We have presented a variational method for decomposing a multidimensional signal, f : Rn →
R, (images for n = 2) into ensembles of constituent modes, uk : Rn → R, intrinsic mode func-

tions which have specific directional and oscillatory characteristics. This multidimensional

extension of the variational mode decomposition (VMD) method [DZ14] yields a sparse rep-

resentation with band-limited modes around a center frequency ωk, which reconstructs the

initial signal, exactly or approximately.

In addition to generalizing the 1D-VMD model to higher dimensions, we introduce a binary

support function Ak : Rn → {0, 1} for each mode uk, such that the signal decomposition obeys

f ≈∑k Ak ·uk. In order to encourage compact spatial support, an L1 and a TV-penalty term

on Ak are introduced. After appropriate variable splitting, we present an ADMM scheme for

efficient optimization of this model. This includes MBO-like threshold dynamics to tackle

the motion by mean curvature stemming from the support-function regularizing TV-term.

In this general setting, our model allows for spatially compact modes that may be spatially

overlapping. By restricting the support functions on the probability simplex,
∑

k Ak = 1,

the modes have mutually exclusive spatial support and actually form a partition of the sig-

nal domain. In this fashion, we obtain an image segmentation model that can be seen as

a Chan-Vese-like region-based model, where the homogeneity is assessed through spectral

bandwidth. Our variable splitting and the handling of region boundaries through the bi-

nary support functions elegantly overcomes the usual tradeoff between spatial and spectral

compactness/bandwidth.
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In order to deal with images of crystal grains, each region being more complicated than a

simple cosine-wave, we introduce the coupling of sub-modes with a single binary support

function. This allows the segmentation of crystal grain images, e.g., from microscopy, into

respective grains of different lattice orientation. Further, non-Gaussian image noise, out-

liers, and lattice defects are efficiently addressed by the introduction of an artifact indicator

function, χ : Rn → {0, 1}.

The work presented in Part II greatly extends the precursor model in [DZ14]. The models

and algorithms allow decomposing a signal/image into modes that may:

• have smooth or sharp boundaries (with or without TV/L1 terms on Ak),

• overlap or form a partition of the domain (image segmentation),

• be essentially wavelike (single mode) or crystalline (coupled sub-modes),

• reconstruct the input image exactly or up to Gaussian noise,

• identify outlier pixels/regions and inpaint them.

Without any doubt, these skills are important to numerous image and signal analysis appli-

cations.
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Part III

Variational Image Destriping:

Stripe Removal via Total Variation

with L1 Fidelity in Remote Sensing

Imagery
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CHAPTER 1

Introduction

Image striping is a well-known phenomenon that arises in multi-detector imaging systems

ranging from pushbroom-type instruments, such as the Airborne Multi-angle Spectro Polari-

metric Imager (AirMSPI), to atomic force mircroscopy (AFM). Biases in lateral detection

occur due to response variation in spatial detectors, such as in satellite imaging systems, or

temporal changes, such as in raster scans. Though these systems are optimally pre-calibrated,

post-processing, such as destriping, of data is prerequisite for accurate and valid analyses.

Striping removal has been traditionally performed using either statistically based methods,

[CI10], [SZ09], or low-pass filtering in the frequency domain [SW88], [Cri89], [HH92], [SL98],

[CZ03]. This method, however, does not remove stripes completely and has an effect of blur-

ring the image. More recently, wavelet-based filtering methods have been proposed [TI01],

[CY06], [RY07]. However, such methods also blur the images and produce ringing effects in

reconstruction.

We follow the pedigree of variational and PDE-based methods applied to images [DB08],

[CV01] in order to construct a well-defined, optimizable model yielding fast and quality

destriping. During our research, we have come across a similar work achieved by a total

variation and framelet regularization model [CL13]. Our model and results were found

independently, but share a similar foundation. The focus here is not about creating a sparse

wavelet representation of the destriped image, but rather on how to remove the optimal

striping mask while preserving high image fidelity. We include detailed derivations and

a motivated evolution of the optimization problem with pedagogy in mind so that these
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novel variational methods can be accessible to all academic disciplines involved with image

processing.

Our research is robust to both isotropic and anisotropic versions of total variation, whereas

[CL13] argue that the anisotropic case is the only appropriate one. While it is true that the

anisotropic case uses a decoupled energy for measure of smoothness and is therefore easier to

minimize, isotropic total variation is not selective in which direction smoothness is penalized.

Image content smoothness (or lack thereof) is not known a priori, thus no preference should

be immediately given to certain directions for evaluating smoothness.

Additionally, our research considers both L2 and L1 penalties for striping size, and compares

the two, ultimately favoring the L1 due to a wider yet tighter distribution of the striping

mask. Using the L1 penalty, and depending on the data, the isotropic total variation, which

theoretically uses more local information, allows for a qualitatively better, less invasive and

more intelligent destriping.

We construct a variational model that is well-defined, qualitatively motivated, and easily

minimized. The constructed energy uses sparsity promoting energy functionals, based on

total variation and L1 energy, to achieve minimally invasive destriping. Both isotropic and

anisotropic total variation, along with L1 and L2 energies, are considered in our variational

model. The alternating direction method of multipliers (ADMM) (split-Bregman) is used in

conjunction with non-linear proximal operators to efficiently optimize the energy, yielding

quick and quality results.
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CHAPTER 2

Variational Formulation

2.1 Striping structure

Let U(x, y) be a stripe-free image of size R by C, and let G(y) be a multiplicative stripe noise

of length R. Then the observed image, F can be written as F (x, y) = G(x, y)U(x, y). Taking

logarithms yields an additive structure, more suitable for energy minimization methods.

The model can now be written as f(x, y) = g(y) + u(x, y) where f(x, y) = ln(F (x, y)),

g(x, y) = ln(G(x, y)), and u(x, y) = ln(U(x, y)).

Striping in images can be viewed as a structured noise, of which variations are mainly

concentrated along one axis. This can be mathematically encoded as ‖∇xG‖ � ‖∇yG‖, or

with the logarithmic terms, ‖∇xg‖ � ‖∇yg‖.

2.2 Tikhonov minimization

A classical Tikhonov minimization problem would consist of a smoothness regularizer and a

data fidelity term, both easily differentiable, with the striping constraint [TA]:

min
u

{
‖∇u(x, y)‖2

2 +
λ

2
‖u(x, y)− f(x, y)‖2

2

}
s.t. ‖∇xg‖ � ‖∇yg‖ (2.1)

This constraint can be simplified by the approximation that ∇xG(x, y) = 0 ∀(x, y), which
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would make G(x, y) = G(y), and g(x, y) = g(y), functions of only one variable. Using the

additive identity between f , g, and u along with the constraint approximation, the new

unconstrained minimization problem is:

min
g

{
‖∇y(f(x, y)− g(x, y))‖2

2 +
λ

2
‖g(x, y)‖2

2

}
By taking the first variation of the energy and setting it to zero, closed form solution to this

minimization problem is

g(x, y) = (∇y · ∇y + λI)−1(∇y · ∇yf(x, y)) = (
∂2

∂y2
+ λI)−1(fyy(x, y)) (2.2)

However, this solution would cause g to become bivariate, in contradiction to the constraint.

Instead, using the Cartesian regularity of our rectangular domain Ω = Ix × Iy and using

g(x, y) = g(y), we can come to a solution that is in agreement with the constraint by

integrating with respect to x:

∫
Ω

g(x, y)dx =

∫
Ix

g(y)dx = g(y)

∫
Ix

dx = g(y)µ(Ix) =

∫
Ix

(
∂2

∂y2
+ λI)−1(fyy(x, y))dx ⇒

(2.3)

g(y) =
1

µ(Ix)

∫
Ix

(
∂2

∂y2
+ λI)−1(fyy(x, y))dx

2.3 Fourier interpretation

Utilizing the Plancherel Fourier isometry, the solution can be interpreted in spectral form

as:

ĝ(ωy) =
1

µ(Ix)

( ω2
y

λ+ ω2
y

)
f̂ =

( ω2
y

λ+ ω2
y

)
¯̂
f
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For a specific x, the stripping g(y) is constant of higher frequency, whereas the underlying

clean image varies more slowly (has more low-frequency content) and while for each x having

a somewhat different frequencies. Therefore, the average frequencies of the clean image are

low in magnitude and of lower-frequency, while the average frequencies of the stripping are

high in magnitude and of higher-frequency. Therefore, the average frequencies (averaged over

ωx) of the cleaned image are simply the average frequencies of the original image multiplied

by a one dimensional Low-Pass filter λ
λ+z2

. Likewise, the striping mask on the spectral side,

ĝ, is obtained analogously with a one dimensional High-Pass filter z2

λ+z2
.

Though this minimization problem is readily solvable in closed form and has a motivated

physical interpretation, we must abandon the quadratic energy terms so that we may have

less penalization for heavier striping and to allow for less smooth solutions. Though the

differentiability of terms is nice, enough optimization machinery has been developed that

we may tread forward. We now investigate and outline some tools from signal processing in

order to refine our model. Stripe and ring artifact removal from this frequency perspective

has been accomplished using wavelet and Fourier filtering [MS09].

108



CHAPTER 3

Tools from Signal Processing

3.1 Total Variation

The idea of using total variation as a regularizer and denoiser that promotes sparsity and

piecewise constant smoothness dates back to Rudin, Osher, and Fatemi [RF92, RO94]. We

begin with defining the notion of total variation, which will be used as a regularizer in the

model.

Definition The total variation of a function f ∈ L1(Ω) is

V (f,Ω) := sup
{∫

Ω

f(x)divφ(x) dx : φ ∈ C1
c (Ω,Rn), ‖φ‖L∞(Ω) ≤ 1

}

For a differentiable function f ∈ Ω, with Ω ⊆ Rn, the total variation of f can be written as

V (f,Ω) =

∫
Ω

|∇f(x)| dx

The choice of vectorial norm inside the integral yields two different types of total variation.

3.1.1 Isotropic

Definition Isotropic total variation: | · | denotes the l2-norm, in which case

V (f,Ω) =

∫
Ω

(
n∑
i

f 2
xi

(x))
1
2 dx
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3.1.2 Anisotropic

Definition Anisotropic total variation: | · | denotes the l1-norm, in which case

V (f,Ω) =

∫
Ω

n∑
i

|fxi(x)|dx

The isotropic and anisotropic cases differ in terms of the geometries they each preserve. While

the decoupled anisotropic total variation preserves piecewise constant orthogonal structures

such as rectangular roofs, the coupled isotropic total variation preserves piecewise constant

radial structures such as silos. Our model will be robust with respect to either choice of total

variation and dual derivations of variable updates will be shown.

3.2 Shrinkage Proximal Operator

We will introduce a splitting variable and quadratic penalty into the model. The solution to

the l1-regularized least squares problem

arg min
~x

µ‖~x‖1 +
1

2
‖~x− ~y‖2

2

is given by the soft threshold proximal mapping operator, shrinkage [Don95, WZ07]:

Definition

Shrink(~x, µ) = Sµ(~x) =
~x

|~x| max{|~x| − µ, 0}

If ‖~x‖1 = ‖x1‖+‖x2‖, as in the anisotropic case of total variation, the shrinkage is decoupled

and done component wise. On the other hand, if ‖~x‖1 =
√
‖x1‖2 + ‖x2‖2, as in the isotropic

case, the terms are coupled and both components are updated simultaneously. Both variants

have their merits, while the former is computationally simpler, the latter has the advantage

of using more local information and may be more conformant to certain image processing

application.
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CHAPTER 4

TV-L1 ADMM Optimization

We will now make some technical modifications to our model, while preserving the qualitative

ideas and motivations. The two energy components of the minimization problem are the

smoothness regularizer and the data fidelity term. The energy of the data fidelity term,

λ
2
‖f(x, y) − u(x, y)‖2

2 = λ
2
‖g(y)‖2

2, can be interpreted as the size of the striping mask. The

L2 fidelity overly penalizes stripes of large magnitude, and likewise under-exaggerates the

significance of stripes of small magnitude. In areas of no striping, we intend our (logarithm

of the) striping mask to be very close to zero, while in areas of heavy striping, we wish to

remove said striping and thus will yield a larger magnitude of our striping mask in that

region. Using the L1 fidelity gives us a smaller striping mask in areas of no striping, leaving

enough energy to remove the heavier striping in localized areas of the image. Because there

is no prior knowledge of the distribution of the stripes, and qualitatively we may wish to

remove deep striping effects while preserving sharp geometry, we believe it is better to update

the model with an L1 striping penalty, ‖g‖1.

An L2 gradient term would cause over-smoothing of the retrieved clean image u(x, y). This

could cause a loss in boundary sharpness of elements in the image (e.g. lakes, rooftops, etc.),

which seems important in the pursuit and usage of destriped images. Implementing a total

variation based regularizer would act similarly to the L2 gradient but maintains boundary

sharpness more natural to the underlying image. Though these terms are not differentiable,

impeding a closed form solution, state-of-the-art nonlinear optimization algorithms are avail-

able for fast convergence to qualitatively meaningful minimizers. The unconstrained total
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variation L1 model (TV-L1) is:

min
u

{
V (u(x, y), Ix × Iy) + λ|u(x, y)− f(x, y)‖1

}
or equivalently, minimizing with respect to the striping mask g:

min
g

{
V (f(x, y)− g(y), Ix × Iy) + λ‖g(y)‖1

}

4.1 Discretization

For the purpose of application and computation, we shall now move the problem into a

discrete setting. Let Ω = {x1, ..., xC}×{y1, ..., yR} be an R×C matrix. First variations will

be approximated via forward differences, so that ∂f
∂y

(xi, yj) ≈ f(xi, yj+1)− f(xi, yj) := δyfi,j

for j = 1, ..., R−1 and analogously for ∂f
∂x
≈ f(xi+1, yj)−f(xi, yj) := δxfi,j for i = 1, ..., C−1.

We will take Neumann boundary conditions, so that on the forward boundary (i = C or

j = R), the derivative is set to zero.

D =



−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

0 0 0 · · · 0 0


∈MR×R(R)

so that Du(xi0 , y) = (δyui0,1, · · · , δyui0,R−1, 0)T

Isotropic total variation:

|∇If(xi, yj)| ≈
√

(δxfi,j)2 + (δyfi,j)2
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Anisotropic total variation:

|∇AIf(xi, yj)| ≈ |δxfi,j|+ |δyfi,j|

With these discrete operators defined, the discrete unconstrained TV-L1 minimization prob-

lem is:

min
g

{∑
i,j

‖〈δxfi,j, δy(fi,j − gj)〉‖1 + λ‖g(y)‖1

}

The two flavors of the minimization problem are:

Anisotropic

min
g

{∑
i,j

|δy(fi,j − gj)|+ λ‖g(y)‖1

}

Isotropic

min
g

{∑
i,j

√
(δxfi,j)2 + (δy(fi,j − gj))2 + λ‖g(y)‖1

}

4.2 Augmented Lagrangian

4.2.1 Anisotropic

With the discrete forward difference approximation matrix defined above, we can rewrite the

minimization problem as:
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Point Form: min
~g

{∑
i,j

|δy(fi,j − gj)|+ λ‖g(y)‖1

}
Vector Form: min

~g

{∑
i

‖D(fi − ~g)‖1 + λ‖g(y)‖1

}
Matrix Form: min

~g

{
‖D(f − ~g ⊗ ~1C)‖1,1 + λ‖g(y)‖1

}

To render the constrained minimization problem unconstrained, we introduce auxiliary vari-

ables, Lagrangian multipliers (split Bregman), and quadratic penalty terms, so that the

augmented Lagrangian is defined as:

Lα,λ(bi, h, g, qi, r) = (4.1)∑
i

(
‖bi‖1 +

α

2
‖bi −D(g − fi)‖2

2 + 〈qi, bi −D(g − fi)〉
)

+ λ
(
‖h‖1 +

α

2
‖h− g‖2

2 + 〈r, h− g〉
)

=

∑
i

(
‖bi‖1 +

α

2
‖bi −D(g − fi) +

qi
α
‖2

2

)
+ λ

(
‖h‖1 +

α

2
‖h− g +

r

α
‖2

2

)
+O(q2

i , r
2)

We now solve the unconstrained saddle point problem.

min
bi,h,g

max
qi,r
Lα,λ(bi, h, g, qi, r)

The solution to the original constrained minimization problem is now found as the saddle

point of the augmented Lagrangian L in a sequence of iterative sub-optimizations called

alternating direction method of multipliers (ADMM) [Roc73b, GM75, GM76, Hes69, WZ08,

GO08].
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The splitting variables bi, and h are updated by the proximal mapping operator:

bk+1
i = arg min

bi

Lα,λ(bi, hk, gk, qki , rk) (4.2)

= arg min
bi

{
‖bi‖1 +

α

2
‖bi −D(g − fi) +

qi
α
‖2

2

}
= S 1

α

(
D(g − fi)−

qi
α

)

hk+1 = arg min
h
Lα,λ(bk+1

i , h, gk, qki , r
k) (4.3)

= arg min
hi

{
‖h‖1 +

α

2
‖h− g‖2

2

}
= S 1

α

(
g − r

α

)

Due to the introduction of the splitting variables, g is only contained in quadratic terms,

and thus easily solved for:

gk+1 = arg min
g
Lα,λ(bk+1

i , hk+1, g, qki , r
k) (4.4)

= arg min
g

{
α

2

∑
i

‖bi −D(g − fi) +
qi
α
‖2

2 +
λα

2
‖h− g +

r

α
‖2

2

}
⇒

δL
δg

= α
∑
i

−DT (bi −D(g − fi) +
qi
α

)− λα(h− g +
r

α
) (4.5)

= α(CDTD + λI)g − αDT (
∑
i

bi +Dfi +
qi
α

)− λαh+ λr = 0 ⇒

g = (CDTD + λI)−1

(
DT (

∑
i

bi +Dfi +
qi
α

) + λ(h− r

α
)

)
(4.6)

The Langrangian multipliers (split Bregman variables) are updated through gradient ascent.
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qk+1
i = qki + τα(bk+1

i −D(gk+1 − fi))

rk+1 = rk + τλα(hk+1 − gk+1))

4.2.2 Isotropic

Due to the coupling of the terms in this version of the minimization problem, we cannot

compactly write the problem with matrices as above; however, the solution is just as readily

available. Here the � denotes the Hadamard matrix power operator, which acts pointwise

on the matrix.

Point Form:

min
~g

{∑
i,j

√
(δxfi,j)2 + (δy(fi,j − gj))2 + λ‖g(y)‖1

}

Matrix Form:

min
~g

{
‖[(fDT )�2 + (D(f − ~g ⊗ ~1C))�2]�

1
2‖1,1 + λ‖g(y)‖1

}

Just as before, we introduce splitting variables and Lagrangian multipliers to form the aug-

mented Lagrangian:
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Lα,λ(ai,j, bi,j, h, g, pi,j, qi,j, r) = (4.7)

∑
i,j

√
|ai,j|2 + |bi,j|2 +

α

2
‖ai,j − δxfi,j‖2

2 + 〈pi,j, ai,j − δxfi,j〉+
α

2
‖bi,j − δy(fi,j − gj)‖2

2

+ 〈qi,j, bi,j − δy(fi,j − gj)〉+ λ(‖h‖1 +
α

2
‖h− g‖2

2 + 〈r, h− g〉) =

∑
i,j

√
|ai,j|2 + |bi,j|2 +

α

2
‖ai,j − δxfi,j +

pi,j
α
‖2

2 +
α

2
‖bi,j − δy(fi,j − gj) +

qi,j
α
‖2

2

+ λ
(
‖h‖1 +

α

2
‖h− g +

r

α
‖2

2

)
+O(q2

i,j, p
2
i,j, r

2)

The splitting variables ai,j, bi,j are updated by the vectorial proximal mapping operator:

〈ai,j, bi,j〉 = arg min
〈ai,j ,bi,j〉

Lα,λ(ai,j, bi,j, hk, gk, pki , qk) (4.8)

= arg min
〈ai,j ,bi,j〉

{√
|ai,j|2 + |bi,j|2 +

α

2
‖ai,j − δxfi,j +

pi,j
α
‖2

2 +
α

2
‖bi,j − δy(fi,j − gj) +

qi,j
α
‖2

2

}
= arg min
〈ai,j ,bi,j〉

{
‖〈ai,j, bi,j〉‖+

α

2
‖〈ai,j, bi,j〉 − 〈δxfi,j +

pi,j
α
, δy(fi,j − gj) +

qi,j
α
〉‖2
}

= S 1
α
(〈δxfi,j +

pi,j
α
, δy(fi,j − gj) +

qi,j
α
〉)

Each component of the vector is updated via shrinkage as follows:

ai,j =
δxfi,j +

pi,j
α

s
·max(s− 1

α
, 0), bi,j =

δy(fi,j − gj) +
qi,j
α

s
·max(s− 1

α
, 0)

s =

√
(δxfi,j +

pi,j
α

)2 + (δy(fi,j − gj) +
qi,j
α

)2

The splitting variable h, the striping mask g, and the Lagrangian multipliers are updated as

before due to the common structure between the two models.

pk+1
i,j = pki,j + τα(δxfi,j +

pi,j
α

))
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4.3 TV-L2 Comparison

We introduce a slight variant to the TV-L1 model where the norm on the striping mask is

replaced by an L2 norm, this is called the TV-L2 model.

min
g

{∑
i,j

‖〈δxfi,j, δy(fi,j − gj)〉‖1 +
λ

2
‖g(y)‖2

2

}
In both the isotropic and anisotropic cases, the energy terms with g in the augmented

Lagrangians are the same:

∑
i,j

α

2
|bi,j − δy(fi,j − gj) +

qi,j
α
|22 +

λ

2
‖g‖2

2 =
∑
i

α

2
‖bi −D(g − fi) +

qi
α
‖2

2 +
λ

2
‖g‖2

2 (4.9)

The optimization of g is done analogously.

gk+1 = arg min
g
Lα,λ(bk+1

i , hk+1, g, pki , q
k
i , r

k) (4.10)

= arg min
g

{
α

2

∑
i

‖bi −D(g − fi) +
qi
α
‖2

2 +
λ

2
‖g‖2

2

}
⇒

δL
δg

= α
∑
i

−DT (bi −D(g − fi) +
qi
α

) + λg (4.11)

= (αCDTD +
λ

α
I)g − αDT (

∑
i

bi +Dfi +
qi
α

) = 0⇒

g = (CDTD +
λ

α
I)−1

(
DT (

∑
i

bi +Dfi +
qi
α

)

)
(4.12)

The quadratic penalty on the size of the striping mask is included for comparison with the

L1 penalty term. Given the same parameters α, and λ, the TV-L1 should be able to remove
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deeper stripes (of higher magnitude) while preserving small fluctuations (of lesser magnitude)

by not classifying them as stripes. We compare both the TV-L1 and TV-L2 models in our

experiments.

The first algorithm (anisotropic) is presented in vector fashion. The second algorithm

(isotropic) is presented in matrix fashion.
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4.4 Complete TV-L1 ADMM algorithm

Algorithm 5 ADMM optimization of TV-L1

1: Initialize: A0, B0, Q0 ← 0 ∈ RR×C , ~g0, ~h0, ~r0 ← 0 ∈ RR×1, n← 0 ∈ R

2: f = (~fi)← ln(F ), D ← 0 ∈ RR×R, (D)i,i = −1, (D)i,i+1 = 1 for i = 1, ..., R− 1

3: repeat

4: n← n+ 1

5: case Anisotropic:

6: for i = 1 : C do

7: Update splitting variable for smoothness regularizer term via shrinkage:

8:

~bi
n+1 ← S 1

α

(
D(~gn − ~fi)−

~qni
α

)
9: Update Lagrangian multiplier for regularizer term via dual ascent:

~qi
n+1 ← ~qi

n + τα(~bi
n+1 −D(~gn − ~fi))

10: case Isotropic:

11: for i = 1 : C, j = 1 : R do

12: Update splitting variables for smoothness regularizer term via vectorial shrinkage:

〈an+1
i,j , bn+1

i,j 〉 ← S 1
α
(〈δxfi,j +

pni,j
α
, δy(fi,j − gnj ) +

qni,j
α
〉)

13: Update Lagrangian multipliers for regularizer term via dual ascent:

14:

pn+1
i,j ← pni,j + τα(δxfi,j +

pi,j
α

)), qn+1
i,j ← qni,j + τα(bn+1

i,j − δy(gnj − fi,j))
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Algorithm 5 ADMM optimization of TV-L1 (continued)

15: case TV-L1:

16: Update splitting variable for data fidelity term via shrinkage:

17:

~hn+1 ← S 1
α

(
~gn − ~rn

α

)
18: Update striping mask:

19:

~gn+1 ← (CDTD + λI)−1

(
DT (

∑
i

~bi
n+1

+D~fi +
~qi
n+1

α
) + λ~hn+1 − λ

α
~rn

)
20: Update Lagrangian multiplier for data fidelity term via dual ascent:

21:

~rn+1 ← ~rn + τλα(~hn+1 − ~gn+1))

22: case TV-L2:

23: Update striping mask:

~gn+1 ← (CDTD + 2
λ

α
I)−1

(
DT (

∑
i

~bi
n+1

+D~fi +
~qi
n+1

α
)

)

Update energy terms:

En+1
1 ←

∑
i

‖D(~fi − ~gn+1)‖1, En+1
2 ← λ‖~gn+1‖1

En+1 ← En+1
1 + En+1

2

24: until convergence:

25: ‖~gn+1 − ~gn‖2
2/‖~gn‖2

2 < εg and |En+1 − En|2/|En|2 < εE.

26: Retrieve clean image:

u← f − gn+1 ⊗ [11, 12, ..., 1C ]

U ← exp(u)
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CHAPTER 5

Experiments and Results

In our experiments, we used data acquired by the Airborne Multi-angle Spectro Polarimetric

Imager (AirMSPI). AirMSPI is an airborne prototype instrument similar to that of the fu-

ture satellite-borne MSPI instrument for obtaining multi-angle polarization imagery [DM13].

The instrument was built for NASA by the Jet Propulsion Laboratory in Pasadena, Cal-

ifornia and has been flying aboard the NASA ER-2 high altitude aircraft since October 2010.

AirMSPI is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera,

measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire

multiangular observations over a ±67◦ along-track range. Two principal observing modes

are employed: step-and-stare, in which 11 km x 11 km targets are observed at a discrete set

of view angles with a spatial resolution of ∼ 10 m; and continuous sweep, in which the cam-

era slews back and forth along the flight track between ±67◦ to acquire wide area coverage

(11 km swath at nadir, target length 108 km) with ∼ 25 m spatial resolution. Step-and-

stare provides more angles, but continuous sweep gives greater coverage. Multiple observing

modes can be programmed into the instrument and activated under cockpit control. Multi-

angle radiance and polarization imagery from AirMSPI will provide 3-D scene context where

clouds and aerosol plumes are present. It will also enable retrieval of aerosol and cloud

macrophysical properties (distribution, height), microphysical properties (size distribution,

single scattering albedo, shape), and optical depth.
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5.1 TV-L1 vs. TV-L2

We first compare destriping results generated using TV-L1 and TV-L2 models. Fig. 5.1 shows

the 355 nm UV channel image with stripes captured by the AirMSPI instrument from Nadir

angle at Mojave, California. The image is destriped using TV-L2 and TV-L1 models. As we

see from the destriped images and corresponding differences between captured images and

destriped images, TV-L2 model does not preserve radiometric intensities in regions where

no stripes are present. Fig. 5.2(a,left) shows plots of recovered function g for TV-L1 and

TV-L2 destriped images. TV-L1 recovered function g is closer to identity especially at the

rows where with no stripes, suggesting TV-L1 reconstruction is more accurate than TV-L2

reconstruction. Fig. 5.2(a,right) shows plots of sums over all rows of the original image with

stripes (from Fig. 5.1), as well as sums of rows for TV-L1 and TV-L2 destriped images.

These plots indicate that TV-L1 model preserves radiometric intensities of the original im-

ages better, which TV-L2 model produces more artificial smoothing throughout the image.

Figures 5.2 (b) and (c) show histograms of function g for TV-L2 and TV-L1 reconstructions,

respectively. TV-L1 reconstruction is pointier than TV-L2 reconstruction. It is also centered

at 1, as opposed to TV-L2 reconstruction, which further indicates better accuracy of TV-L1

model. Note that the actual stripes, at around g ≈ 0.95 are represented in the histograms

by small bumps.
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(a) (b) (c) (d) (e)

Figure 5.1: (a) The 355 nm channel image with stripes captured by AirMSPI instrument

from Nadir angle at Mojave, California. (b) Destriped image using TV-L2 model. (c)

Difference between captured image from (a) and TV-L2 destriped image from (b). (d)

Destriped image using TV-L1 model. (e) Difference between captured image from (a) and

TV-L1 destriped image from (d).
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Figure 5.2: Comparisons of TV-L2 and TV-L1 destriping for the results shown in Fig. 5.1. (a)

Left: plots of recovered function G for TV-L2 destriped image (blue) and TV-L1 destriped

image (red) are shown. Right: plots of sums over all rows of original image with stripes

(black), TV-L2 destriped image (blue), and TV-L1 destriped image (red) are shown. (b)

Histogram of function G for TV-L2 reconstruction. (c) Histogram of function G for TV-L1

reconstruction. 125



Fig. 5.3 and Fig. 5.4 display similar results as in Fig. 5.1 and 5.2 for the 355 nm channel

image with stripes depicting clouds over the Pacific Ocean captured by AirMSPI instrument

from 66.0◦F angle.

Figures 5.5, 5.6, and 5.7 show more examples of TV-L1 reconstruction of images captured

using continuous sweep observing mode. Figures 5.8 and 5.9 display images captured using

the step-and-stare observing mode as well as destriped results using TV-L1 model.

(a) (b) (c) (d) (e)

Figure 5.3: (a) The 355 nm channel image with stripes depicting clouds over the Pacific

Ocean captured by AirMSPI instrument from 66.0◦F angle. (b) Destriped image using

TV-L2 model. (c) Difference between captured image from (a) and TV-L2 destriped image

from (b). (d) Destriped image using TV-L1 model. (e) Difference between captured image

from (a) and TV-L1 destriped image from (d).
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Figure 5.4: Comparisons of TV-L2 and TV-L1 destriping for the results shown in Fig. 5.3. (a)

Left: plots of recovered function G for TV-L2 destriped image (blue) and TV-L1 destriped

image (red) are shown. Right: plots of sums over all rows of original image with stripes

(black), TV-L2 destriped image (blue), and TV-L1 destriped image (red) are shown. (b)

Histogram of function G for TV-L2 reconstruction. (c) Histogram of function G for TV-L1

reconstruction. 127



5.2 Mojave

Original, f Reconstructed, u Difference, f − u

(a)

(b)

(c)

Figure 5.5: Images with stripes captured by AirMSPI instrument at Mojave, California

(left), destriped images using TV-L1 model (center), and differences between captured and

destriped images (right) are shown. The bands and viewing angles are: (a) 380 nm band at

Nadir angle; (b) 355 nm band at 66.1◦F angle; (c) 355 nm band at 66.1◦A angle. 355 nm

band at Nadir angle is shown in Fig. 5.1.

128



5.3 Pacific Ocean

Original, f Reconstructed, u Difference, f − u

(a)

(b)

Figure 5.6: Images with stripes depicting clouds over the Pacific Ocean captured by AirMSPI

instrument (left), destriped images using TV-L1 model (center), and differences between

captured and destriped images (right) are shown. The bands are: (a) 380 nm, and (b) 660

nm all at 66.0◦F. 355 nm band at 66.0◦F angle is shown in Fig. 5.3.

129



5.4 Ivanpah

Original, f Reconstructed, u Difference, f − u

(a)

(b)

(c)

Figure 5.7: Images with stripes of dry lake Ivanpah, California captured by AirMSPI instru-

ment (left), destriped images using TV-L1 model (center), and differences between captured

and destriped images (right) are shown. The bands are: (a) 355 nm, (b) 380 nm, and (c)

865 nm bands, all at Nadir angle.
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5.5 Avalon

Original, f Reconstructed, u Difference, f − u

(a)

(b)

Figure 5.8: Images captured by AirMSPI instrument at Avalon, California (left), destriped

images using TV-L1 model (center), and differences between captured and destriped images

(right) are shown. The bands are: (a) 355 nm and (b) 380 nm, both captured using the

continuous sweep observing mode.
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5.6 Fallbrook

Original, f Reconstructed, u Difference, f − u

(a)

(b)

Figure 5.9: Images with stripes captured by AirMSPI instrument at Fallbrook, California

(left), destriped images using TV-L1 model (center), and differences between captured and

destriped (right) are shown. The bands are: (a) 355 nm and (b) 380 nm, both captured

using the continuous sweep observing mode.
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CHAPTER 6

Conclusions and Outlook

In Part III, we have presented a novel variational method for image destriping through fast

minimization techniques of appropriately modelled energy functionals - namely total varia-

tion and L1 data fidelity term. In contrast to existing destriping models, such as statistical

estimation models, we simplify the calculations while achieving excellent qualitative results

quickly and with few explicit parameters.

Our destriping model solves the inverse problem as follows: minimally remove a univariate

multiplicative striping mask from the data, such that the clean image is somewhat smooth

and the removed stripe has low energy. We assess the smoothness of the clean image using to-

tal variation, which maintains sharp image features and preserves definition and contrast. We

address both isotropic and anisotropic total variation, each having their respective strengths

and weaknesses. We use L1, and for comparison, L2 energy to measure the removed striping,

ensuring minimal data removal and thus a clean image of high fidelity.

The variational problem is solved very efficiently in an ADMM approach: introduce splitting

variables and quadratic penalties for deviations from said splitting variables to allow effi-

cient optimization via proximal shrinkage operators, explicit quadratic solutions, and simple

gradient ascent for the Lagrangian multipliers. In our experiments, we have shown that the

proposed method yields qualitatively good results, removes very minimal masking, and does

so quickly in both iterations and time. From the histogram distributions of G, we observe a

narrower spread around 1, yet a wider, more equidistributed support, suggesting that most

of the time, there is minimal masking removal (multiplier close to 1), yet in areas of heavy

133



striping, the destriping effect is more prevalent and of greater magnitude.

Applications of this algorithm are not limited to satellite imagery, and may be analogized

to other fields such as raster scans in microscopy. Any scientific measurements (of images)

made mostly along a curve – parameterizable by a single dimension – may be susceptible to

such striping biases, and may be a candidate for similar destriping. Future work will expand

this model to multi-modal images, color images, and may incorporate other specific priors

on the data.
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