Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

Trends in Chinook salmon spawner abundance and total run size highlight linkages between life history, geography and decline

Published Web Location

https://doi.org/10.1111/faf.12750
No data is associated with this publication.
Creative Commons 'BY-ND' version 4.0 license
Abstract

Chinook salmon (Oncorhynchus tshawytscha, Salmonidae) are foundational to social-ecological systems of the Northeast Pacific Rim and exhibit a rich diversity of life histories including in their adult migration timing, age at critical life-history transitions and marine feeding distributions. In recent decades Chinook have experienced declines across much of their native range; however, changes in productivity and abundance have rarely been evaluated in relation to life-history variation. To understand trends in Chinook salmon production, and how they are related to life history, we compiled time series data from the Fraser River to the Sacramento River on total run size (pre-fishery abundance) and escapement (post-fishery spawner abundance) and fit time series models to estimate trends across this bioregion. Our analysis revealed that most Chinook populations are declining, with negative trends in escapement (57 of 79) and total run (16 of 23) size. Trends were most acutely negative for interior spring Chinook in the Fraser, Columbia and Snake Rivers and most populations in California. Summer and fall Chinook had mixed trends, with several summer and fall upriver bright populations in the interior Columbia and Fraser exhibiting increases in abundance from the 1990s to 2019. Our research reveals widespread declines of this important species, but local complexity in trends that are mediated by population-level life history, migratory behaviours and watershed-scale restoration actions. Understanding linkages between life histories and resilience should inform rebuilding efforts for Chinook salmon and highlight the need to conserve intraspecific biodiversity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item