Skip to main content
eScholarship
Open Access Publications from the University of California

Robust lane detection and tracking in challenging scenarios

Abstract

A lane-detection system is an important component of many intelligent transportation systems. We present a robust lane-detection-and-tracking algorithm to deal with challenging scenarios such as a lane curvature, worn lane markings, lane changes, and emerging, ending, merging, and splitting lanes. We first present a comparative study to find a good real-time lane-marking classifier. Once detection is done, the lane markings are grouped into lane-boundary hypotheses. We group left and right lane boundaries separately to effectively handle merging and splitting lanes. A fast and robust algorithm, based on random-sample consensus and particle filtering, is proposed to generate a large number of hypotheses in real time. The generated hypotheses are evaluated and grouped based on a probabilistic framework. The suggested framework effectively combines a likelihood-based object-recognition algorithm with a Markov-style process (tracking) and can also be applied to general-part-based object-tracking problems. An experimental result on local streets and highways shows that the suggested algorithm is very reliable.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View