Skip to main content
Download PDF
- Main
PCA = Gabor for Expression Recognition
Abstract
We show that Gabor filter representations give quantitatively indistinguishable results for classification of facial expressions as local PCA representations, in contrast to other recent work. We also show that a simple discriminant analysis automatically locates regions roughly corresponding to relevant Facial Actions. Finally, we in troduce a method that typically boosts generalization performance 9% by "peeking" at all of the unlabeled training patt erns before classifying them.
Pre-2018 CSE ID: CS1999-0629
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%