Skip to main content
Open Access Publications from the University of California


UC San Francisco Previously Published Works bannerUCSF

Antigen Complexed with a TLR9 Agonist Bolsters c-Myc and mTORC1 Activity in Germinal Center B Lymphocytes


The germinal center (GC) is the anatomical site where humoral immunity evolves. B cells undergo cycles of proliferation and selection to produce high-affinity Abs against Ag. Direct linkage of a TLR9 agonist (CpG) to a T-dependent Ag increases the number of GC B cells. We used a T-dependent Ag complexed with CpG and a genetic model for ablating the TLR9 signaling adaptor molecule MyD88 specifically in B cells (B-MyD88- mice) together with transcriptomics to determine how this innate pathway positively regulates the GC. GC B cells from complex Ag-immunized B-MyD88- mice were defective in inducing gene expression signatures downstream of c-Myc and mTORC1. In agreement with the latter gene signature, ribosomal protein S6 phosphorylation was increased in GC B cells from wild-type mice compared with B-MyD88- mice. However, GC B cell expression of a c-Myc protein reporter was enhanced by CpG attached to Ag in both wild-type and B-MyD88- mice, indicating a B cell-extrinsic effect on c-Myc protein expression combined with a B cell-intrinsic enhancement of gene expression downstream of c-Myc. Both mTORC1 activity and c-Myc are directly induced by T cell help, indicating that TLR9 signaling in GC B cells either enhances their access to T cell help or directly influences these pathways to further enhance the effect of T cell help. Taken together, these findings indicate that TLR9 signaling in the GC could provide a surrogate prosurvival stimulus, "TLR help," thus lowering the threshold for selection and increasing the magnitude of the GC response.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View