Effect of surface termination on the balance between friction and failure of Ti3C2Tx MXenes
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Effect of surface termination on the balance between friction and failure of Ti3C2Tx MXenes

Abstract

Abstract: Reactive molecular dynamics simulations of Ti3C2Tx with three different surface terminations were used to understand friction and failure of MXenes during sliding at normal pressures from 2–20 GPa and temperatures from 300–1100 K. The O-terminated MXene had the smallest shear stress at low pressures and temperatures, but failed at more severe conditions due to interlayer bonding and the formation of Ti–O–Ti bridges between MXene layers. Failure was not observed for the OH-terminated MXene or a heterostructure combining O- and OH-terminations. For these, at less severe operating conditions, shear stress was smaller for the OH-terminated MXene, while the opposite was observed at higher temperatures and pressures. These trends were explained in terms of adhesion and the complex effect of hydrogen atoms that can either facilitate or hinder sliding, depending on the termination and conditions. Results show that friction and failure are affected by and potentially tunable via MXene surface termination.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View