Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Polysaccharide gel coating of the leaves of Brasenia schreberi lowers plasma cholesterol in hamsters

Abstract

Brasenia schreberi ( chún cài) is an invasive aquatic weed found in the USA, but the plant has economic value in Asia where it is cultivated for food. The young leaves of B. schreberi are coated with gelatinous water-insoluble mucilage. This mucilage is a polysaccharide composed of galactose, mannose, fucose, and other monosaccharides. Because some carbohydrate gels are hypocholesterolemic, we evaluated their cholesterol-lowering properties in male hamsters fed hypercholesterolemic diets containing 2% gel coat from B. schreberi (GEL), or 1% cholestyramine (CA), or 5% hydroxypropyl methylcellulose (HPMC), and compared them to 5% microcrystalline cellulose (control) for 3 weeks. We found that very-low-density lipoprotein-, low-density lipoprotein-, and total-cholesterol concentrations in plasma were significantly lowered by GEL, CA, and HPMC compared to control. High-density lipoprotein-cholesterol concentration was lowered by CA and HPMC. Body weights and abdominal adipose tissue weight of GEL and control group animals were greater than those of the CA and HPMC groups. Fecal lipid excretion was greater in the CA and HPMC groups than in the control group. Expression of hepatic CYP51 and CYP7A1 mRNA was upregulated by CA, HPMC, and GEL, indicating increased hepatic cholesterol and bile acid synthesis. Expression of low-density lipoprotein receptor mRNA was upregulated by all treatments. These results suggest that modulation of hepatic expression of cholesterol and bile acid metabolism-regulated genes contributes to the cholesterol-lowering effects of GEL.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View