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Abstract

Methods for the Analysis of High Throughput Sequencing Data

by

Nathan Paul Boley

Doctor of Philosophy in BioStatistics

University of California, Berkeley

Professor Peter J. Bickel, Chair

As the cost of short read DNA sequencing continues to drop, new experiments are being

developed which allow scientists to probe subtle biological phenomenon on a genome wide

scale. These new experiments bring new analytical challenges in the form of large amounts of

noisy data. Here we present models and tools for the analysis of high throughput sequencing

data.
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CHAPTER 1

Introduction

The development of technologies which are able to cost e�ectively sequence hundreds of

millions of short DNA fragments has led to a revolution in experimental genetics. High

throughput sequencing technologies provide a common platform through which researchers

can interrogate diverse biological features including DNA sequence, mRNA sequence, RNA

structure, epigentic modi�cations, and chromatin structure. Obtaining useful information

from the resulting mounds of data can be challenging, particularly since technology develop-

ment has been driven by what is technically feasible, often with little regard for experimen-

tal design. To infer relationships between sequenced reads and biological events, statistical

methods must account for the large amounts of noise from technical and biological sources,

must contend with possible identi�ability problems, and should be computationally feasible

for large datasets.

Here we present several methods and associated tools which address the challenges involved

with the analysis of data from high throughput sequencing experiments. In the �rst chapter,

we present a careful treatment of short read mapping and the process of associating RNA

fragments with the locus from which they originated. We show that by applying these models

we are better able to distinguish between competing biological hypotheses than current

methods. In the second, we show that by integrating data from multiple experiment types,

we are better able to identify noise. In the third, we present a model for the quanti�cation of

RNA elements, and derive conditions under which the quantity of such elements is estimable

from short read sequencing technologies. Finally, in chapter 4, we present an integrated

model for the discovery of RNA elements, and apply it to data collected by the modENCODE

consortium.
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CHAPTER 2

Statmap

2.1. Introduction

For organisms with a reference genome [16], analysis of sequencing data can be substan-

tially simpli�ed and improved by comparing the sequenced reads to the reference genome.

This chapter focuses on this process of using a reference genome to inform the analysis of

sequencing data.

Analysis of sequencing experiments performed on an organism with a reference genome

typically begins by associating each read with one or more locations in the genome from

which the read could have originated, a process known as �mapping� or �read alignment�. For

example, if one is attempting to identify novel single nucleotide mutatations in a population,

a typical analysis pipeline would involve aligning the sequenced reads from each individual

to the reference genome, and then identifying single bases that di�er between the reference

genome and the sequenced reads. Conceptually the goal is simple: to identify bases that di�er

from the reference sequence. However, this analysis is confounded by noise introduced during

sample preparation, noise in the sequencing technologies, and an identi�ability problem

stemming from duplicated sequences in the reference genome.

If there was no mapping ambiguity or sequencing error, one would be able to identify the lo-

cation where a read originated by �nding the genomic location with a sequence that matches

the read's sequence. In reality, the sequence reported by the sequencing technology might

not match any genomic location. Base level mutations, insertions, and deletions can be

introduced during the steps leading up to the DNA's puri�cation, during the PCR ampli�-

cation steps that typically preceed sequencing, or during the sequencing process. In a typical

RNA experiment performed using the newest Illumina sequencing and sample preparatory

technologies, bases on average have roughly a 5% chance of being reported incorrectly. Thus,

in a read that is 150 basepairs long, we expect to have 7-8 mutations on average; less than

0.1% of reads will perfectly match the sequence from which they originated.

A single read may also map to several genomic locations. If the distribution of bases within

a genome were uniform, then reads of 150 bases would be long enough to uniquely map every

read with high probability. However, new genomes originate not only by single base level
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changes but by large duplications and re-arrangments. Under the uniform base composition

model, the probability that a 150 basepair segment taken randomly from the human genome

would match another segment with less than 7 mutations is < 1 × 10−76; however, in the

GRCh38 reference genome, 18% of 150 basepair fragments match another region with fewer

than 7 mutations. Although the cost per base of read sequencing has been rapidly falling,

read lengths are increasing slowly and often at the cost of accuracy. Furthermore, because

of the structure of genomic sequences, moderate increases in read length do little to improve

the identi�ability problem.

Because of these problems, drawing strong biological conclusions from a single read is very

di�cult. Fortunately, modern sequencing experiments produce tens of millions of reads,

which can be jointly modeled to improve mapping accuracy. Such modelling is the focus of

this paper.

Good models of sequencing experiments are complex, and typically assay speci�c. Further-

more, good techniques must balance accuracy and computational cost. Thus, for pedagogical

reasons, we develop the model in three sections. In the �rst, we present the full model which,

although general enough to apply to any sequencing experiment, has more parameters than

can be �t without additional assumptions. Next, we discuss the assay speci�c parameter-

izations and the corresponding estimation procedures. Finally, we discuss approximations

which are necessary to make the estimation procedure feasible.

2.2. Model

Sequencing involves randomly selecting a pre-determined number DNA fragments from a

solution and measuring their sequence. The output of such experiments is a list of genomic

sequences. Each sequence in this list is referred to as a read; we use ri to indicate the

observed sequence of the i'th read. We assume that each observed read originated from a

single location in the reference genome. We use the term �map� to refer to the process of

inferring the genomic location at which a read originated.

2.2.1. Likelihood Model. Since the number of fragments in solution is much larger

than the number of fragments sequenced, we model sequencing as a simple random sample

with replacement. We de�ne two model parameters.

The �rst, P [ri|gj,l], is the conditional probability of observing ri given that it originated from
a fragment of length l that originated from genomic location j. This speci�es the sequencing

error model. We assume that the probability of observing ri is only dependent on genomic

location through the location's sequence. That is, for two locations j and j′ with the same
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sequence, we assume that P [ri|gj,l] = P [ri|gj′,l]. We discuss further paramaterizations in

2.3.1.

The second, P [gj,l], is the marginal probability of a sampling a fragment of length l originating

from genomic locations j. With assay speci�c knowledge, we can constrain the form of

theP [gj,l]'s and thus make use of known structure. For example, ChIP-Seq experiments are

designed such that observing a fragment at position j with length l implies that the protein

of interest was bound somewhere between bases j and j + l. Thus, if it were known that a

protein were bound at, say, position j+ 10, we would be equally likely to observe a fragment

of length l originating from position j. In general the distribution of P [gj,l] is a function of the

underlying assay type, the fragment length distribution, and a hidden biological parameter.

For instance, in a ChIP-seq experiment, the hidden biological parameter is the binding sites

and their relative occupancies.

To formalize this we constrain P [gj,l] to be equal to
∑

k θkψfl(j, l|k) where

fl: the marginal probability of sequencing a fragment of length l, where
∑

l fl = 1.

θk: the marginal probability of sampling read having arisen from biological event k.

ψfl(j, l|k): the probability that event k emits a fragment that spans bases j to j + l.

We assume that the form of the function ψfl(j, l|k) is known from how the assay was designed;

we derive the speci�c form for various assays in 2.3.3.

Then the joint log likelihood of observing a set reads is

lhd[~θ, P [ri|gj,l], ψfl ; ~r, ] =
∏
i

∑
j

P [ri|gj,l]P [gj,l](2.2.1)

=
∏
i

∑
j,l

P [ri|gj,l]
∑
k

θkψfl(j, l|k)(2.2.2)

where we assume that each read originated due to some biological event and that each biolog-

ical event produced a fragment, i.e.
∑

j,l P [ri|gj,l] = 1 ∀i, l,
∑

k θk = 1, and
∑

j,l ψfl(j, l|k) =

1 ∀k.

2.3. Parameter Estimation

The likelihood model relies on the estimation of three distinct quantites:

P [ri|gj,l]: the sequence error model
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fl: the fragment length distribution

θk: the fraction of fragments in the population that resulted from biological event k

Estimating θk is the primary goal of a sequencing experiment, but it is also the most di�cult

to estimate because it is high dimensional and dependent upon genomic location. For in-

stance, in a ChIP-Seq experiment, the protein of interest typically binds to roughly 100,000

di�erent genomic locations, which means that it is common to estimate a particular binding

site's occupancy from less than 100 reads.

In contrast, P [ri|gj,l] and fl have the same structure genome wide, are independent of one
another, and realistic parameterizations never have more than 1000 parameters. For these

reasons we �rst estimate these quantities, plug them into (2.2.2), and then maximize the

likelihood over θ. We describe each of these procedures below.

2.3.1. Sequencing Error Model Estimation. Read errors are introduced during

multiple experimental stages including sample preparation, PCR ampli�cation, and sequenc-

ing. Sequencing platforms provide an estimate of the sequencing error rate, but this estimate

can only account for noise in the sequencing and is thus an underestimate of the true error

rate (see Figure 2.3.1)

In addition to the sequencing platforms estimated error rate, position within the read, base

type, read pair, and sequenced direction are all correlated with the true error rate. Further-

more, we expect the marginal error rate across positions and adjacent sequencer estimated

quality codes to be smooth.

We model mutation events as independent conditional on read position, sequencer estimated

error rate, and base type, conditional on read pair and direction. That is, for each read pair-

direction combination and given an observed base b ∈ [ACGT ] in position i with sequencing

error estimate es, we model the probability of observing the base b given that the true base

was o by

P [b = o|i, es, d] = βb,o,d,0 + βb,o,d,1s(i) + βb,o,d,2s(es) + βb,o,d,3 (s(i) : s(es))(2.3.1)

where s is an adaptive spline smoothing function.

To estimate the sequencing error model parameters we require sequenced reads with known

true underlying sequences. When the experimental design includes �spike-ins� � known

sequence combined with the sample to assist in quality control � we can use reads that map

to this sequence to estimate the error rates. When we do not have access to such a training

set we use reads that only map �well� under the edit distance metric to �unique� sequence

within the reference genome. Speci�cally, we identify regions that are at least 2 kb long
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Figure 2.3.1. Illumina sequencing technology estimated error rate versus observed for a

ChIP-seq experiment involving 8 rounds of PCR. Note that the observed error rate reaches

a minimum of roughly 2e-3, which is consistent with the commonly reported PCR error rate

of 3e-4 mutations per round.

in which no read length long subsequence maps to another genomic location with less than

a 20% mismatch rate. We then map a subset of reads to this subset of the genome using

edit distance, assuming that the mapping location with the smallest edit distance is correct.

We smooth the marginal distribution of the position- and sequencing technology-dependent

reported error rates, and then iterate between �tting a multinomial glm, and re-smoothing.

We use the adaptive spline smooth technique suggested in [25] (see 2.3.1).

Some have reported additional errors in RNA-seq assays which are due to random hexamer

priming bias Hansen et al. [23]. However, modern RNA-seq protocols use a higher concen-

tration of random primer than the studies in which such biases were identi�ed. We analyzed

112 modENCODE RNAseq data sets (see Chapter 5) and were not able to identify such

bias. Because the bias appears to be corrected in modern protocols, we have decided not

to model this in statmap. Similarly, [45] reports serial correlation in mutation rates, which
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the authors attempt to correct by �tting a �rst order markov model. When we analyed 112

modENCODE RNAseq data sets, we did not �nd a signi�cant serial correlation and so do

not attempt to model it.

2.3.2. Fragment Length Distribution Estimation. We estimate the fragment length

distribution in a similar manner to how we estimate the sequencing error model. We identify

genomic regions that are unique, in the sense that most similar alternate genomic sequence

is far apart in edit distance. We align reads to these locations, and then use the gaussian

kernel smoothed fragment length density with the kernel width set to the standard deviation

of the data, as suggested in [25].

2.3.3. Emitted Fragment Density Estimation. Our ability to estimate θ in 2.2.2

depends upon a biological event k's emitted fragment distribution ψfl(l, j|k). This function

is assay dependent; we have implemented kernels for two common assays which we describe

here.

2.3.3.1. RNA-seq kernel. RNA-seq assays allow the direct observation of transcribed re-

gions, splicing events, gene expression levels, rna editing events and, in some cases, transcript

expression levels and transcript boundaries. The output of an RNA experiment is a set of

read sequences which are then mapped back to the reference genome, producing a trace

across the genome and a set of reads that only map to the genome in a gapped fashion,

indicating potential splice sites (see Figure 2.3.3).

There are many variations of the RNA-seq assay, but they all share the same structure

(see 2.3.4). Essentially, RNA is selected, fragmented, ampli�ed, and sequenced. The key

observation is that each RNA fragment originates from a particular transcript. Therefore,

each k corresponds to a distinct transcript and θk is the population fraction of fragments that

originated from transcript k. If we assume that RNA fragments are sampled uniformly, then

every fragment of the same length is equally likely and thenψfl(j|l, k) = fl∑
l′≥l(tk)

(l(tk)−l)fl′

where l (tk) is the length of transcript k. This model has been implemented in [36] and more

recently in [45].

Note that because longer transcripts will, on average, produce more fragments, the θ̂'s are not

estimates of the relative transcript frequencies. Rather, under the uniform fragmentation

model, the concentration of transipt k in solution is θk∑
l′≥l(tk)

(l(tk)−l)fl′
. We discuss such

normalization in detail in Chapter 4.

Biases in RNA-seq read coverage have been widely reported (e.g. [5, 23]). Although re-

�nements in experimental techniques have substantially reduced these biases in many areas,

7



some, such as GC bias due to di�erential PCR ampli�cation, remain and will be very dif-

�cult to eliminate via improved experimental protocols. There is a large body of literature

that has developed models to remove such bias, but the core component is the same. Given

two fragments, x1 and x2, of the same length that originated from the same transcript, one

might expect one to be overrepresented. For instance, for the RNA-seq data collected by [5],

if x1 has a 60% GC content and x2 has a 40% GC content, we would expect to observe x1
20% more often. We extend our framework to allow such bias to be modeled by re-de�ning

ψfl(j, l|k) as flω(k,j,l)∑
l′≥l(tk)

fl′
∑fl′

m=1 ω(k,m,l
′)
where w(k, j, l) is a weight function.

Figure 2.3.4. Stages in a typical RNA seq experiment.

2.3.3.2. ChIP-seq kernel . ChIP-seq assays allow the identi�cation of genomic locations

occuppied by DNA binding proteins. In ENCODE, it has been applied to over 2000 transcrip-

tion factors and histone modi�cations across hundreds of di�erent cell lines and conditions.

The assay is straightforward at a high level: all proteins in a cell are attached tightly to

their bound DNA via UV or formaldehyde cross-linking. The DNA is then fragmented, and

a bead-attached antibody is added which binds to the DNA-binding protein of interest. The
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beads are puri�ed (with the protein and DNA still attached), the protein and DNA are

unlinked, and these DNA fragments are sequenced (see 2.3.5).

The goal of a CHiP-seq experiment is to identify binding sites. The fragment corresponding

to each sequenced read is known to have been bound by a protein, but from a single read it

is impossible to determine exactly where in the fragment the protein was bound. By aligning

multiple reads and noting that DNA can not fragment at locations bound by a protein, it is

possible to more precisely identify binding sites (see 2.3.6). Note that a ChIP-seq experiment

does not allow the identi�cation of the total amount of bound DNA, but rather the ratio of

the occupancies of various binding sites.

This suggests a natural form for the ChIP-Seq kernel, where each position k in the genome

corresponds to a potential binding site. θk then corresponds to the expected fraction of

fragments that originated due to a protein bound at binding site k. By assay design, such

fragments are emitted with density ψfl(j, l|k) = fl∑
l′ fl′ (l

′−bl)
, where bl is the length of the

protein of interest's binding site.

2.3.4. Estimating θ. We use the EM algorithm and linear programming to �nd the

maximum likelihood estimate of θ. In the M step, with θold and thus Pθ[gj,l] assumed known,

we calculate

(2.3.2) Pnew[gj,l | ri] = rij
∑
k

θoldk ψfl(j|l, k)

where ψfl(j|l, k) is the fraction of fragments with length l originating from location j given

that they originated due to biological event k. We then normalize Pnew[gj,l | ri] such that

(2.3.3)
∑
all j

Pnew[gj,l | ri] = 1

Then, in the E step, given the updated estimates of P [gj,l | ri] we update the expectation of

the marginal read density as

(2.3.4) Pnew[gj,l] =
∑
all i

Pnew[gj,l | ri]

9



where P̂ [r] is the binned frequency of r. Now we can plug back into (2.2.2) with Pnew[gj,l]

given by (??) and optimize over θ, a linear programming problem in the general case. How-

ever, in practice, the θk can often be estimated directly from the Pnew[gj,l]. This is essentially

the approach of Vardi [56].

2.3.5. Con�dence Bounds. Although the likelihood is convex, it is not strictly con-

vex. Thus, although the value of maximum likelihood is guaranteed to be the maximum

achievable value, there may be multiple maximums and, worse, these may be far apart in pa-

rameter space. For instance, several strains of Drosophila Melanogaster, a diploid organism,

were speci�cally bred to reduce variation between the paternal and maternal chromosomes.

Therefore, when we observe a read, it is often impossible to determine if it originated from

the maternal or paternal chromosome. A similar identi�ability problem is observed in retro-

viral insertions in the human genome. In such situations, the resulting relative posterior

probabilities are completely determined by the EM algorithm's initial conditions.

For many studies, the relative read concentrations in regions with identical sequence is not

important. For instance, if one is interested in estimating gene expression from an RNAseq

experiment, then it is not important where the gene expression originated, just that it is

being expressed. By default, we use a uniform starting location for the EM algorithm, which

distributes reads equally between regions with identical sequence.

In other studies, such as a GWAS study where one is attempting to associate snps with

disease traits, it is important to know where the gene expression originated. To �nd a lower

bound for θk, we wish to �nd the lowest value that it can achieve while still being �reasonably

likely�. Formally, for the maxiumum likelihood estimate θ?, we wish to �nd θ such that θk
is at a minimum subject to the constraint lhd[θ?; ~r, ~ψ]− lhd[θ?; ~r, ~ψ] > C, for some choice

of C. This is approximately χ2
1 with one degree of freedom and so we choose C = −1

2
χ2
1 (α)

for some desired marginal signi�cance level α. This problem is convex, and can be solved

using standard convex optimzation tools. However, it must be solved individually for each

distinct k and so can be expensive in practice. We discuss this problem in detail as applied

to RNA-seq data in Chapter 4.

2.3.6. Read Mapping Estimation. Given our estimate of ~θ, we can estimate the

posterior probability that a read originated from a fragment of length l that originated from

location j by

(2.3.5) P [gj,l | ri] =
P [ri | gj,l]Pθ̂[gj,l]∑
k,l P [ri | g′k,l]Pθ̂[g′k,l]
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where only alignments with a high posterior probability are reported (by default we do not

report mappings with P [gj,l | ri] < 0.01).

2.4. Approximations and Implementation Details

Maximimizing the joint likelihood naively is not feasible, and so we split the process into

two stages. In the �rst, we identify all likely mapping locations, which we will refer to as

candidate mappings. In the second, we use this sparse set of mappings to optimize the model

parameters.

2.4.1. Candidate Mapping Identi�cation. Our estimation procedure relies upon

estimating

P [gj,l | ri] =
P [ri | gj,l]Pθ̂[gj,l]∑
k,l P [ri | g′k,l]Pθ̂[g′k,l]

for each i where P [ri | gj,l] is assumed to be known. For a sequencing experiment with

100 million reads performed on human cells using the sequencing error model described

previously, this would require on the order of 1022 computations at each iteration of the EM

algorithm. Since this is not computationally feasible, we must make approximations.

The �rst approximation is made by noting that, for the vast majority of k, P [ri | gk,l] is very
small, so

P [gj | ri] =
P [ri | gj,l]Pθ[gj,l]∑
k P [ri | g′k,l]P [g′k,l]

≈ P [ri | gj,l]Pθ[gj,l]I [P [ri | gj,l]Pθ[gj,l] > β1]∑
k P [ri | gk,l]Pθ[gk,l]I [P [ri | gk,l]Pθ[gk,l] > β1]

(2.4.1)

where β1 is a tuning parameter controlling the quality of our approximation. Then we need

only calculate P [gj,l | ri] for a subset of locations, although choosing β1 to guarantee that the
approximation is good may make the search very expensive in practice.

The second approximation is made by noting that given the location j with the highest value

of P [ri | gj,l]Pθ[gj,l], we can limit our error by ignoring locations where the ratio

P [ri | gj]Pθ̂[gj]
maxk {P [ri | gk]P [gk]}

< β2

where β2 is a second tuning parameter controlling the quality of our approximation.

The third apprximation is made by noting that the marginal read density Pθ[gj,l] is positively

correlated with the number of reads that map near a location j. Therefore, identifying all j
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such that

P [ri | gj,l] > β1

P [ri | gj,l]
maxk {P [ri | gk,l]}

> β2

and then plugging them back into 2.4.1 will, on average, yield a better approximation to

2.3.5. The set of genomic locations that meet these criteria are the set of candidate mappings

for read i.

2.4.1.1. Tuning Parameters. The values of β1 and β2 control the tradeo� between the

quality of the approximation and the computational cost. Unfortunately the scale of these

parameters can vary widely between experiments, sequencing technologies, assays and even

reads, which makes choosing good values di�cult. To mitigate this problem, we re-parameterize

β1and β2 in terms of a new parameter, α, de�ned as the expected fraction of reads at which

it is acceptable for the true mapping origin to not be included in the candidate mapping set

given that the read originated from the reference genome. Then we estimate values of β's to

satisfy this constraint under the model.

Tuning β1. For a desired maximum false discovery rateα and given a read ri that orig-

inated from location gt, we wish to choose β1 such that P [P (ri|gt) < β1] < α. Under the

sequencing error model, we estimate the probability of a mutation at base i to base o as εi,o.

The log likelihood is thus the product of independent multinomial with ~p = [εi,A, εi,C , εi,G, εi,T ]

and N = 1. In principle, we could sample from this distribution, calculate the log likelihood

for each bootstrap sample, and use the empirical quantile as our estimate of P [P (ri|gt) < β1].

However, this infeasible in practice, so we calculate the �rst two central moments and then

compare to a reference distribution with matched moments.

That is, for each read we estimate the �rst two central moments

E[logP (ri|gt)] =
∑
m

∑
o∈ACGT

log10 (εm,o)

V AR[logP (ri|gt)] =
∑
m

∑
o1∈ACGT

[
εm,o1 (1− εm,o1) +

∑
o2 6=o1

log10 (−εm,o1εm,o2)

]
−E[logP (ri|gt)]

then set β1 to the α'th quartile of a gamma distribution with mean E[logP (ri|gt)] and
variance V ar[logP (ri|gt)]. Finally, we subtract log10 0.01, the penalty for a single high

quality mismatch, from β1 to correct for the the fact that the log likelihood is dicrete.
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Tuning β2. We choose β2 to limit the error of 2.4.1. Given a set of identi�ed genomic

locations J, the total probability mass recovered is

=

∑
j∈J P [ri | gj]∑
k P [ri | gk]

≤
∑

j∈J P [ri | gj]∑
k∈J (P [ri | gk]) + β2NGl

so we set β2 = − 1
α

log10Gl, where Gl is the total number genomic locations.

2.4.1.2. Indexing Method. We have developed and implemented a fast indexing method

specialized to work with sequencing data. It is a metric tree [55] consisting of two node types:

internal nodes and leaf nodes. Internal nodes contain an array of 44pointers corresponding to

the possible distinct combinations of AGCT. Each pointer points to another internal node or,

if there are a su�ciently small number of children, a leaf nodes. Leaf nodes contain a su�x

array with pointers to a union that contains either (a) a genomic location if the sequence

is unique in the reference genome or (b) a pointer to an array of genomic locations if the

sequence is degenerate. Since the majority of distinct sequences over 16 bases in animal

genomes arise from a single genomic location, this structure helps limit the space of the

genome index.

To probe the index for a speci�c read, we �rst must de�ne a distance metric between the

read and every position in the reference genome. We implement this via a length 4 array

for each base in the read, where each entry in the array corresponds to the penalty of a

particular genome base. For instance, under the edit distance metric, the penalty array for

an A is [0,−1,−1,−1]. Under the sequencing error model, the penalty array for an A in

position i is log10 P [ri1 = A|A].

Then, the search algorithm proceeds as follows:

Algorithm 1 Index Search

(1) Set the mininum allowable penalty, Ω, tolog10 β1.
(2) Initialize a queue, and add the root node of the index to it.
(3) Until the stack is empty, pop the node o� the top. We will refer to this as the

current node.
(a) If the current node is a leaf node, save each genomic location where the penalty

is ≤ Ω, and update Ω equal to the max of Ω and penalty − log10 β2.
(b) Calculate the penalty for each letter in the current node, and add each child to

the stack if the calculated penalty is greater than Ω.

13



2.4.2. Genome Segmentation. Naively, one would �nd the maximum likelihood es-

timate via the EM algorithm by repeated application of 2.3.4 and 2.3.2. This involves a

calculation for each θk and every read at each step. In practice, the θk converge at di�erent

rates making many of the update operations unneccessary. By only updating the parameters

that have not yet converged, we can signi�cantly reduce the execution time. We accomplish

this by noting that the likelihood can often be factored into a product of indepdendent com-

ponents. An example of this is two transcripts that only contain unique sequence and do

not overlap the same genomic sequence. In such cases, we can perform the optimization

procedure over each component independently allowing us to focus on the parameters whose

estimates have not yet converged.

Our goal is to factor the joint likelihood, which we formulate as a graph partitioning problem.

Under this model every node corresponds to a single biological event k with θk > 0. Nodes

are connected if either (a) they have a non-zero probability of emitting a fragment that covers

the same genomic base or (b) a read exists that maps to fragments that both of them have a

non-zero probability of emitting. Then, the sets of connected reads and θ's correspond to the

products in the factored likelihood. Note that our ability to factor the likelihood relies upon

a sparse candidate mappings set; if P [ri|gj,l] were never zero then the graph would be fully

connected. Even after this segmentation, low quality reads can produce weak connections

between otherwise distinct clusters. Thus we separate component pairs connected only by

shared mappings if the ratio of the sum of the edge weights connecting them to their total

mass is less than a third tuning parameter β3. We set β3 to 1e−6 by default.

2.5. Validation

2.5.1. Peak Calling in a Diploid Background. One signi�cant advantage of Statmap

is its ability to distinguish between long regions of very similar sequence. This, for instance,

allows us to call peaks in recently diverged paralogs or di�erentiate between chip peaks in

a diploid background. It is well known that mapping strategies dependent on �uniquely"

mapping reads fail in these and similar cases.

To examine this advantage, we simulated a ChIP-seq experiment in a synthetic genome

composed of two 5000 basepair 'chromosomes'. The �rst (paternal) is a copy of the eve

stripe 2 locus taken from D. Mel; the second (maternal) is a duplicate with three single

basepair mutations ( simulating three single nucleotide mutations ). Next, we sampled 1000

35 basepair single-end reads from the region, mutated the sampled sequences using the

Illumina error model, and mapped them back to the synthetic genome. The true density is

plotted, below, against the estimated densities from Statmap and Bowtie [? ]. The bootstrap
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samples were taken from 25 random local minimums with 25 bootstrap samples from each,

generated using the method outlined in Section C.2.1(c). The simulation code is distributed

with Statmap. All of Statmap's tuning parameters were set to their defaults with version

Statmap 0.2.0 Beta 3. We used Bowtie version 0.12.5 with the �all and �try-hard �ags.
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Figure 2.3.2. Example estimated error rates from an ATAC-seq experiment performed

on 4-8 hour old C. Elegans embryos. The estimates correspond to pair1 reads that mapped

to forward genome. The upper left and right panels show the estimated error rates versus

read position and sequencing machine error estimate respectively; the red line corresponds to

the smoothed estimate. The bottom left panel shows the cumulative distribution of average

mutation rates by read. The blue line corresponds to the observed rates; the red lines are

20 sets of reads simulated under the �t error model. The bottom right plot shows the

expected error quantiles versus observed. Although the independence model underestimates

the true error rate in the tails, >99.9% of reads have estimated error rates that are within

the expected sampling variance.
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Figure 2.3.3. RNA-seq read coverage and identi�ed junctions for CG2017 in two bio-

logical replicates of drosophila melanogaster heads from mated 20 day old females. The top

two grey tracks show the mapped RNA-seq read coverage. Below are identi�ed elements:

dark green are TSS exons, black are internal exons, purple are TES exons, and thin lines

are splice junctions. The bottom track contains all transcript isoforms annotated in Flybase

version 12.

Figure 2.3.5. Stages in a typical ChIP-Seq experiment. Figure adapted from "Chro-

matin immunoprecipitation sequencing" by Jkwchui, which is licensed under Creative Com-

mons Attribution-Share Alike 3.0 via Wikimedia Commons.

17



Figure 2.3.6. Aligned reads from a ChIP-Seq experiment. The transcription factor

(TF) is bound on each fragment, but the positioning is not consistent. When the fragments

are aligned then the binding site can be seen to be between bases 375 and 425. Figure

adapted from http://bioinformatics.cineca.it/cast/.
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Figure 2.5.1. A ChIP-seq experiment was simulated in a synthetic genome composed

of two 5000 basepair 'chromosomes'. The �rst (paternal) is a copy of the eve stripe 2 locus

taken from D. Mel; the second (maternal) is a duplicate with three single basepair mutations

( simulating three single nucleotide mutations ). Next, we sampled 1000 35 basepair single-

end reads from the region, mutated the sampled sequences using the Illumina error model,

and mapped them back to the synthetic genome. The left plots correspond to the bowtie

estimated read coverage; the right to stamps. The true density is plotted in a dashed black

line, blue is the statmap estimated density, i.e. the maximum likelihood estimate of 2.2.2.

Orange and green are the upper and lower bounds, respectively.
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CHAPTER 3

Identifying Transcript Bounds

3.1. Overview

Genome regions are transcribed from DNA into RNA, and then �processed�. During process-

ing, contiguous segments of RNA are removed, a string of A's (i.e. poly(A) tail) is added to

the end of the transcript, and a 'cap' is added to the beginning. Processed transcripts are

transcripts after these processing steps have occurred.

There are three primary experiments for interrogating transcript structure. RNAseq provides

a simple random sample from all transcript fragments, primarily providing information about

the internal transcript structure. Poly(A)-site-seq sequencing (PASseq) targets sequences

with poly(A) tails, and thus provides data about the location of processed transcript end

sites (TESs). The CAGE assay, and it's successor RAMPAGE, sequences capped fragments,

providing a sample from transcript start sites (TSSs). We focus our analysis e�orts on the

latter two assays, but RNAseq data can serve as a useful control. All three assays are noisy.

For instance, the cap selection step in a CAGE assay is not 100% speci�c, so the actual

distribution of observed reads is a mixture of capped and uncapped transcript fragments.

Peak detection is the process of separating noise from signal, or identifying regions in the

genome that are signi�cantly enriched for TSS or TES sites.

3.2. Motivation and Previous Work

The FANTOM consortium was funded to identify all human TSS's and, to this end, per-

formed the CAGE assay in 114 distinct human tissues. The set of TSS's identi�ed by the

consortium was 10 fold larger than the sum of all previously identi�ed TSSs. Disturbingly,

the novel TSSs were often located in genomic regions previously identi�ed as coding and 3'

UTRs, which is inconsistent with our current understanding of how di�erent sequence com-

position corresponds to di�erent function. Furthermore the RIKEN-identi�ed TSS regions

correspond poorly to promoter regions identi�ed from histone modi�cation data (see 3.2.1).

The fact that transcribed regions are enriched for CAGE tags suggested to us that the cap

selection process is not speci�c. We have developed a model which identi�es such noise in

order to estimate the distribution of TSS's.
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Figure 3.2.1. All K562 TSSs identi�ed by the FANTOM5 consortium were associ-

ated with their chromatin state class membership as predicted by the Human Epigenome

Roadmap. The majority of the TSSs fall in �transcribed� classes (purple) and the TSS

classes (blue) only account for 20.4% of the total signal.

3.3. Method

For pedagogical reasons we present our method in terms of a CAGE experiment; however,

the technique applies equally well to PASseq and RAMPAGE data.

3.3.1. Mixture Model. We model the CAGE data as a mixture of reads sampled

from the noise distribution (uncapped fragments) and signal (capped fragments). The set of

observed reads from a properly matched RNA-seq experiment (e.g., same biological sample,

same nucleic acid extraction method, etc.) is essentially a sample from the uncapped, or

noise, distribution. Furthermore, we expect the distribution of noise reads within an exon

to be roughly uniform. We do not have any prior knowledge about the shape of the capped

distribution, but we do expect there to be few bases which correspond to true TSS's and we

expect these bases to be situated near each other. To formalize this, we �rst must de�ne

some terminology:

• Yi the observed count of CAGE reads that start at base i

• Ni the observed count of RNAseq reads that start at base i

• ψi the population fraction of signal reads that begin at base i

• ηi the population fraction of noise reads that begin at base i

• λ the fraction of CAGE reads in a region that originated from the noise component

We assume that the probability of sampling a read starting at position i from the population

of CAGE reads is ληi + (1 − λ)ψi and that the probability of sampling position i from the
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population of RNA-Seq reads is ηi. If we do not constrain the distribution of ψ andη then

the log likelihood is that for a mixture of two multinomials

l(n, s;Y,N) ∝
∑
i

{Yi log (ληi + (1− λ)ψi)− log(Yi!)}+
∑
i

{Ni log (ηi)− log(Ni!)}

s.t.
∑
i

ηi = 1,
∑

ψi = 1, ψi ≥ 0, ηi ≥ 0

and a maximum likelihood estimate is λ = 0, ηi = Ni∑
Ni

, and ψi = Yi∑
Yi
, although this estimate

is not unique. Although suggestive, the maximum likelihood estimate does not encode any

of our prior information on the distributions of ~ψ and ~η; namely, that ~ψ is smooth within

exonic regions and ~η is sparse both in the total number of non-zero bases (i.e., bases with

η > 0) and the number of contiguous intervals with any non-zero base.

We have developed a heuristic procedure that identi�es such regions, which we describe

below.

3.3.2. Estimation Procedure. Our procedure has three distinct parts. In the �rst,

we segment the genome into gene regions, which we describe in 5. In the second, we use the

RNA-seq control to estimate the distribution of ~η. In the third we condition on ~η and then

greedily �nd regions that appear to be enriched for reads taken from the signal distribution.

3.3.2.1. Estimating the Density of the Noise Distribution. RNA-seq experiments are de-

signed such that all fragments originating from the same transcript and have the same length

are equally likely to be observed. We do not directly observe the transcript that a fragment

originates from, but we do know the genomic locations corresponding to the regions that

transcribed to produce the fragment. Within a contiguous genomic region with no TSS,

TES, or splice sites, the expected distribution of RNAseq fragment start sites is uniform.

Given all such regions we could then, in principle, estimate the noise fragment density by

the average number of fragments that begin in the region.

In practice, the fragmentation process is not perfectly uniform and all TSS, TES, and splice

sites are not known. Therefore, we use reference and discovered TSS, TES, and splice sites to

segment a gene region. Furthermore, within each segment, we use a kernel density estimator

to smooth the RNAseq counts which helps to make our estimate robust.

3.3.2.2. Identifying Signal Regions. Our goal is to identify the regions with ~ψ greater

than 0. However, even if ~η were known, the model is not identi�able so we need additional

constraints. Biological knowedge motivates us to prefer solutions where both the total num-

ber of bases with ~ψ > 0 is small and the number of contiguous regions with ~ψ > 0 is small.
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Finally, since our goal is to produce a set of high con�dence TSS's, we prefer solutions with

high values of λ.

This problem is not necessarily well de�ned as there is a fundamental tradeo� in the number

of identi�ed regions and the number of called bases. To take an extreme example, if we were

only concerned with minimizing the number of enriched regions then we could call the entire

gene region enriched. Of course, this gene region wide �peak� would include a large number of

bases that are not enriched for signal reads. We have developed a heuristic algorithm based

upon a hierarchical testing approach which we believe produces peaks that are a reasonable

trade-o� between these two competing interests.

Our algorithm requires us to decide whether a particular sub-region is enriched for signal,

which we formulate as a hypothesis testing problem. That is, for a genomic region, we wish

to test the null of every ψi = 0 (i.e. θ0 =
∑
ψi) versus the alternative of any ψi > 0 (i.e.∑

ψi > 0). If we can reject the null at level α then we declare the region enriched - otherwise

we assume the region is all noise. We dicuss the details of the test in 3.3.2.3.

The algorithm depends on the mixture parameter λ which is unknown. To be conserva-

tive we initialize λ̂ = 1, call peaks and then update our estimate of λ̂ to
∑L

i=1 YiI[i ∈
N]/

(∑L
i=1 Y

∑L
ii=1 ηiI[i ∈ N]

)
, where N is the set of noise regions. We repeat the peak call-

ing process until our estimate stabilizes. Note that, because we are using regions in which

we failed to reject the null at level α < 0.5, λ̂ is always an overestimate of the true noise

fraction.

Peak Calling Algorithm Overview. Given a gene region of length L, an estimate of

~η, a minimum region size, and a desired signi�cance level α we �rst test whether the gene

region is enriched at level α. If we can't reject the null, then we declare the region devoid of

signal reads and are done. Otherwise we proceed to re�ne the region.

Note that under our model this initial test controls the type I error for the number of falsely

identi�ed enriched regions. But, because rejecting the null only tells us that at least 1 base

in the region is enriched for signal reads, it tells us very little about the number of bases

that are incorrectly identi�ed as enriched. This is where the heuristic comes into play.

Since we now know that 1 base is enriched, and we expect the enrichment to be local and

contiguous, we ask ourselves if we can explain the enrichment by 1 or more enriched sub-

regions. So we randomly split the enriched into two regions, test each for enrichment, and

thus have 3 outcomes:

1) we only reject the NULL in one region
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In this case, we add the failure to reject region to the list of noise regions, and the enriched

region to the list of regions to further re�ne. This always allows us to improve our estimate

regardless of the desired region/base enrichment trade-o�. That is, since we have the prior

belief that the number of enriched bases and regions is small, we assume that the enrichment

of the parent region is due to the sub-region in which we were able to reject the NULL. Now

we have the same number of enriched peaks, but less enriched bases. Of course this increases

the expected number of type II errors.

2) we do not reject the NULL in either region

In this case we declare the parent region enriched, and add it to the called peaks list. This

is bad for our ability to reduce the number of identi�ed signal bases but good because we do

not identify any additional enriched regions.

3) we reject the NULL in both regions

In this case we add both regions to the list of regions to further re�ne. Since we have the

power to detect enriched bases in both regions we can further re�ne the peaks list by reducing

the number of enriched bases, but it also increases the number of called regions.

We continue with this process until we reach a point where we have a set of regions that are

enriched, but we can't explain the enrichment in these regions by further subdivisions.

The precise algorithm is described in 2.

Split Method. We have presented the algorithm in context of a random split point

because it allows us to control the type I error rate for every called enriched region. Running

the algorithm using a random split point can yield inconsistent results. To improve our

estimate, we run the algorithm multiple times and call a base enriched only if it is enriched

in the majority of runs. However, this process is expensive computationally, and so we now

choose the split point at the largest sub-region with zero signal reads.

Note that by looking at the data to choose our split point, we can no longer make guarantees

about the type I error rate at the enriched region level. For instance, if one chose the split

point to maximize the chance of rejection in the left subregion, then the type I error rate

for that region would be higher than α. That being said, we see no reason why our split

point method would be dependent on the distribution of the test statistic. Furthermore,

empirically, our split point method gives similar results to the random split point method

and so we do not believe that our split point heuristic is in�ating the peak level type I error

rate.
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Algorithm 2 Greedy identi�cation of singal regions
Given a gene region of length L, an estimate of ~η, a minimum region size, and a desired

signi�cance level α:
(1) Initialize λ0 = 1
(2) Initialize the set of noise regions (N) and signal regions (S) to the empty set
(3) Initialize the set of regions to test, T, to contain the entire gene region
(4) Until λi = λi−1

(a) While T is non-empty, choose a region from T, and test the region for signi�-
cance at level α/2L (see 3.3.2.3).
• If the region is not signi�cant, add it to N
• If the region is signi�cant and it is smaller than the minimum region size,
add it to S
• Otherwise, split the region into 2 subregions by choosing the base with
the lowest number of reads and add them to T.

(b) Update the estimate of lambda, setting it to

λi =
L∑
i=1

YiI[i ∈ N]/

(
L∑
i=1

Y
L∑
ii=1

ηiI[i ∈ N]

)

3.3.2.3. Testing for Signi�cance of a Region. Given a region covering bases [i, i+ n), we

wish to determine whether ψi = 0 for every position within the region. De�ning θ =
∑i+n

j=i ψj,

this is equivalent to testing the null θ0 = 0 versus the alternative Θ1 = {θ|θ > 0}. Givenλ,
~η, the log-likelihood ratio is

log
[
lhd(θ0; ~Y )/lhd(Θ1; ~Y )

]
=

i+n∑
j=i

{Yj log ((1− λ)ηj)} −
i+n∑
j=i

{Yj log (ληj + (1− λ)ψj)}

Note, critically, note that the likelihood ratio statistic is non-decreasing in θ. Thus, were

the ~ψ known, the universally most powerful test at level α would set the critical value C

such that P
[
lhd(θ0; ~Y ) > C

]
= α. Since the ψj are unknown, we choose them to maximize

lhd(θ1; ~Y ) subject to θ1 =
∑i+n

j=i ηj and ηj ≥ 0, which is also non-decreasing in θ1, so we

chosoe P
[
lhd(θ0; ~Y ) > C

]
= α.

In principle, we can estimate the critical value with the parametric bootstrap. We sample

Nbootstrap times from the multinomial with bin probabilities ~η and counts λ (
∑
Yi), and then

estimate the critical value by the α'th empirical quantile among∑i+n
j=i

{
N

(k)
j log (ηj)− log

(
N

(k)
j !
)}

where N (k)
j is the count from base j in the k'th sample. Unfortunately, this procedure is

impractical for values of α less than 1e−2, which is very common because of the necessary

multiple testing corrections.
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Under the null, the bin counts are nearly independent and so the distribution of counts at

base i can be approximated by the binomial Bin (λ (
∑
Yi) , ηi). Since the ηi are typically

very small, we can calculate the moments e�ciently with the truncated series

Ef(Xm) =

λ
∑
Y∑

k=0

(
λ
∑
Y

k

)
ηkk(1− nk)λ

∑
Y−k (k log (ηi)− log (k!))m

Ef(Ni)
m =

λ
∑

i Yi∑
k=0

ηki
k!
e−ni (k log (ηi)− log (k!))m

where we truncate the sum when the last term multiplied by λ
∑
Y − k is below some

threshold, thus bounding our relative error. We then estimate the critical value by Φ−1η (α),

where Φ is a gamma distribution with matched moments.

3.4. Results

3.4.1. Comparison to GENCODE annotated TSS's. The Gingeras lab, working

with the ENCODE consortium, has performed 36 RAMPAGE experiments and matching

RNAseq data. All of the experiments were performed on Ribosome depleted, >200 basepair

RNA fragments collected from whole cells. In addition, the Gingeras lab produced peak calls

on each of these exeriments. Here we compare the peaks identi�ed by our method to those

produced by the Gingeras lab in two samples: neural embryo tissue and the K562 cell line.

We mapped the RAMPAGE and RNAseq reads to the hg19 reference using the ENCODE

consortium's mapping pipelines. In addition, for the fetal neural sample, we eliminated PCR

duplicates by removing RAMPAGE reads that had identical sequence to another reads.

We ran the peak calling algrotihms on these reads and compared the resulting peaks to

GENCODE v19. We identi�ed a peak as a match if it was within 50 basepairs of an annotated

GENCODE TSS, and plotted the fraction of GENCODE TSSs identi�ed versus the fraction

of peaks that were also identi�ed in GENCODE. Of the top thousand peaks called by both

methods, 93.1% of ours were within 50 basepairs of a GENCODE annotated TSS versus

78.7% for the Gingeras lab's method. However, in the top 10,000 peaks called by each

method, 84.6% of ours correspond to a GENCODE TSS versus 83.0% for the the Gingeras

lab method. See 3.4.1 for full the speci�city versus sensitivity plot.

We performed the same analysis on RAMPAGE data collected from the K562 cell line. In ad-

dition, we applied our method to K562 CAGE data collected by the FANTOM5 consortium,

and their identi�ed peaks. Again, if the GENCODE TSS's are taken as the truth, then our
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Figure 3.4.1. Fraction of GENCODE version 19 recovered versus average
recovery rate. Note that our method produces less false positives among the
high quality peaks. The majority of these peaks appear in heavily transcribed
regions, which we are able to �ag as false positives due of our use of an RNAseq
control.

method produces consistently higher quality peaks than other methods (see ). Furthermore,

the quality of called peaks is similar between biological replicates and even across assays.

3.4.2. Comparison to Human Epigenome Predicted States. Comparing peak

calls to GENCODE annotated TSSs is useful, but might give us a biased estimate of the

accuracy of our peak-calling method. The Human Epigenome Roadmap Project collected

histone modi�cation data across hundreds of tissues and cell types, and used this data to

classify genomic regions in each sample, including K562. When we analyze the chromatin

predicted states of each TSS predicted by the various methods, we �nd that our method

has the highest enrichment of the TSS and TSS �anking classes. Although it appears that

the CAGE data is signi�cantly worse than the RAMPAGE, the performance gap may be

exaggerated by the lack of a matching RNAseq sample from the same cell growth batch.
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Figure 3.4.2. Fraction of GENCODE version 19 recovered versus average
recovery rate. Note that, although FANTOM CAGE peaks correspond very
poorly with GENCODE annotated TSSs, by integrating a matching RNAseq
data set we are able to produce a high quality peak list from the same input
data.

Figure 3.4.3. Chromatin state enrichment of predicted TSSs.
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CHAPTER 4

Transcript Expression Estimation

4.1. Introduction

A typical RNA-seq experiment involves by purifying an RNA sample, fragmenting the RNA,

converting these fragments to their equivalent cDNA with reverse-transcriptase, amplifying

the cDNA via PCR, and �nally sequencing the resulting fragments. The resulting sequences

are then mapped back to a reference genome. For clarity, we will assume that the mapping

procedure is perfect, i.e. we assume that we can unambiguously identify the genomic region

from which each fragment originated.

One of the primary uses of RNA-seq data is to estimate the concentration of various gene

elements within a sample. For instance, a researcher may wish to identify genes that are

over-expressed in a cancer sample in the hope of identifying onco-genes or potential drug

targets. The primary challenge in estimating gene expression is relating the number of reads

that map to a gene to the number of RNA molecules in the sample. The fragmentation

process is designed such that each fragment of a particular type is equally likely, and so we

apply the following generative model:

Algorithm 3 Generative RNAseq model

(1) Choose a fragment length with probability fl
(2) Choose a gene of length L with probability (Lgi − fl)gi/

∑
k(Lgk − fl)gk

(3) Choose position j with probability 1/ (Lgi − fl), which yields the fragment spanning
bases [j, j + L− 1]

Limitations in sequencing technologies limit the length of the fragments that can be e�ciently

sequenced to roughly 400 basepairs, much shorter than a typical human mRNA. In this limit,

Lg ≫ fl, a gene's relative concentration of gene i is just Ngi/Lgi∑
k Ngk

/Lk
. A commonly used mea-

sure of gene expression is the number of sequenced fragments that map to a gene per kilobase

of gene length per million reads sequenced (FPKM) which is only correct in this limit. We can

improve the estimate by accounting for the fragment length distribution. Given the relative

concentration of a fragment of length l, fl, we estimate the relative concentration of gene i by∑
l fl

I(Lgi≤l)(Ngi−l)∑
k I(Lgk

≤l)(Ngk
−l)

where
∑

l fl = 1. This model is used by the most popular gene expres-

sion estimation tools (robinson2010edger, delhomme2012easyrnaseq, anders2012di�erential)
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although these tools also correct for additional assay biases and mappability. However, even

after accounting for such biases, this model is wrong because fragments arise from transcripts

and genes may produce multiple transcripts of varying lengths. The obvious correction is to

estimate expression at the transcript level, but this leads to a di�erent set of problems.

4.2. Transcript Expression Estimation

4.2.1. Frequency Estimation. The primary challenge in estimating transcript expres-

sion is identifying a vector, ~t, that corresponds to the transcripts relative concentrations in

solution. This is di�cult because reads can not necessarily be unambiguously assigned to

one transcript. Therefore, the �rst step in estimating transcript expression levels is rede�n-

ing the transcripts in terms of non-overlapping exon segments, or pseudo exons. It is then

possible to unambiguously group reads by the set of pseudo exons that they overlap, which

we refer to as a �fragment type� (see Figure 4.2.1). The fragment types that can be directly

observed is a function of both an RNA-seq experiment's sequenced read length and fragment

length distribution.

The fraction of reads that are expected to be of a certain fragment type is used to build

the design matrix, X. Formally, each entry Xij is de�ned to be the probability of sampling

fragment type i given that the read originated from transcript j. In practice, we estimate

Xij by
∑

l f̂lC
l
i,j∑Nt

k=1

∑
l f̂lC

l
k,j

where f̂l is the estimated fraction of fragments of length l, C l
i,j is the

count of distinct fragments of length l in transcript j that produce fragments of type i, and

Nt is the total number of transcript models. This estimate formalizes the assumption that,

within a transcript, all fragments with the same length are equally likely to be observed.

Then, given a vector of observed bin counts, ~Y , the maximum likelihood estimate of the

transcript frequencies, ~t, is the vector t̂ that maximizes the log-likelihood, lhd(Y ; ~t) =∑
i Yi log

[
X~t
]
, subject to the constaints that tj ≥ 0 and

∑
j tj = 1. This estimate is

unique whenever no row of X can be constructed from a positively weighted sum of other

rows. In such unique cases, the statistical model is said to be identi�able given the data.

Maximizing the likelihood equation requires optimizing lhd(Y ; ~t) =
∑

i Yi log
{∑

j Xijtj

}
,

subject to
∑

j tj = 1, tj ≥ 0. Although this is convex and can be solved using standard

convex solvers like CVX [20], the potentially large number of candidate transcripts makes

such approaches too expensive to use routinely. We have found that, in practice, a projected

gradient ascent method is the most performant (data not shown). We �nd a starting location

by minimizing
∑

i

(
Yi∑
j Yj
−
∑

j Xijtj

)2
st
∑

j tj = 1, tj ≥ 0 using a QP solver. Then, we

use projected gradient ascent with a fast simplex projection method [14] until the update
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di�erences are less than machine precision. Since the likelihood surface is smooth and convex,

this method always converges to the optimum. We have veri�ed that solutions found by the

GRIT software package are equivalent to the CVX solutions (data not shown).
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Figure 4.2.1. Expression Estimation Overview - To identify the set of transcripts

in pod1, we �nd the set of non-overlapping segments, labeled exon segments, with which it

possible to reconstruct the transcript set. In the zoomed-in region containing segments 7-12,

the possible fragment types, labeled Single-End Fragment Types, that can be observed

from 75 basepair reads are shown. Next, we estimate the fragment length distribution, and

then identify the sets of pseudo exons that can be overlapped by paired end reads. The blue

and green fragments are possible fragments taken from transcript model 2. For example, in

the 200 basepair fragment labeled {7,8;10,11}, read 1 ( in blue ) overlaps exon segments 7

and 8, while pair 2 ( in green ) overlaps segments 10 and 11. The fact that read 1 overlaps

segments 7 and 8 doesn't give us any additional information about the transcript isoform

from which it originated, but the fact that read 2 overlaps 10 and 11 implies that it must

have come from either model 2 or 5.
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4.2.2. Con�dence Bounds. To form con�dence bounds on a particular transcript's

frequency estimate, t̂i, our goal is to �nd the minimum and maximum values that ti can take

while still being �reasonably likely� to produce the observed data set. We identify a subset ∆R

of the probability simplex such that lhd(Y ; ~t) is su�ciently high for every ~t ∈ ∆R. Convexity

of the likelihood function guarantees this region is simple and convex, which allows us to form

our con�dence bound for transcript i as the interval [min{ti : t ∈ ∆R), max{ti : t ∈ ∆R)] -

a conservative estimate for individual coverage rates.

This interval can be estimated directly by �nding the ~t on the probability simplex that

minimizes ti such that the log likelihood ratio lhd(~tmle)− lhd(~t) is above some critical value.

Formally, we ti, involves �nding the minimum value of ~t which minimizes the i'th component,

subject to the restriction that the log likelihood ratio lhd(~tmle) − lhd(~t) is su�ciently high.

We use the objective lhd(Y ; ~t) = Y tO
O +

∑
i Yi log

{∑
j Xijtj

}
where tO and YO are the

estimated fraction and the count of reads that fall outside the the gene of interest. This

objective accounts for the fact that the number of reads that originates from a given gene

locus is random. Because the maximum likelihood estimate of tO is YO
Yo+

∑
i Yi

, we rescale ~tmle
by 1− t̂O to calculate lhd(~tmle).

Since the asymptotic distribution of lhd(~tmle)− lhd(~t) , a log likelihood ratio statistic[3] with

one degree of freedom, is 1
2
χ2 we set the critical value to 1

2
χ2 (α) for some desired marginal

signi�cance level α. When the model is identi�able, simulations show that this approach

produces con�dence bounds with the correct rejection rates for realistic sample sizes (see

Figure 4.2.2). For unidenti�able models, our method produces a lower con�dence bound

of zero for every transcript in the gene. This allows the user to easily identify regions in

which RNA-seq data alone is not su�cient to identify the set of transcripts present. In

contrast, Cu�inks and Rsem[35] both use a Bayesian approach, sampling from a posterior

distribution to estimate con�dence bounds. In complex genes, such as Dscam1 or Mhc, the

resulting con�dence bounds are strongly dependent on the prior distribution, which can lead

to dramatically anti-conservative con�dence bounds (see Figure 5.3.4).

4.2.3. Sparse Estimation. When the statistical model is not identi�able it may still be

useful, for the purposes of visualization or comparative analysis, to quantify a representative

set of transcripts. A natural assumption is that the set of transcripts present in solution for a

given gene is small. Optimally, we would identify the smallest such subset of transcripts that

with a likleihood near the maximum in the unconstrained model, but this is not computa-

tionally feasible. Instead, we maximize the augmented objective, maxj

{∑
i Yi log

[
X~t
]
− λ

tj

}
subject to tj ≥ 0 and

∑
j tj = 1, where λ is a tuning parameter that determines the sparsity
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of the resulting solution[42]. Although this optimization problem is not convex, it can be

solved by solving Nt convex problems.

We wish to choose the largest λ that guarantees that the sparse solution, ~t, lies with the con-

�dence region, ∆R. That is, we choose λ such that
∑

i Yi log
[
X~t
]
− λ

‖~t‖∞
≥
∑

i Yi log
[
Xt̂?

]
−

1
2
χ2
1 (2α), where t̂? refers to the maximum likelihood solution, and we use 2α because the

con�dence bound test is one-sided. Setting
∥∥~t∥∥∞ to max

{
min ~t

}
, the maximum lower con-

�dence bound, λ ≤ 1
2

max
{

min ~t
}

[χ2
1 (2α)− χ2

1 (α)]. Even though λ is typically very close

to 0 in the unidenti�able case, in such cases very small values of lambda can change the

solution substantially because a large portion of the parameter space has likelihoods very

close to the maximum.

4.2.4. Simulations. We used the simulation script distributed with GRIT to simulate

mapped read data for all simulations. The tool works by �rst sampling a random transcript

from the provided frequency distribution, then sampling a random fragment length from

the provided fragment length distribution, and �nally choosing a fragment uniformily from

the chosen trancript with the chosen fragment length until the desired number of samples

is achieved. We do not introduce any sequencing or mapping artifacts into the simulated

reads. We note that this simulation is consistent with both the GRIT, Cu�inks, and Rsem

transcript expression models.

4.2.4.1. Synthetic Gene Simulations. For each simulation we sampled from the tran-

scripts uniformly, with a Normal(150, 25) fragment length distribution truncated at ±2 stan-

dard deviations. We ran GRIT, Trinity, and Cu�inks, and used compare_annotations.py

with a boundary match of ±20 basepairs to calculate sensitivity and speci�city numbers,

which is distributed as part of the GRIT software package. We ran 100 simulations total; 20

simulations with each of 100, 1000, 1e4, and 1e5 simulated reads.

4.3. Complexity of the Human Transcriptome

Estimating transcript expression from short read RNA-seq data is not in general possible

because of the identi�ability problem. As seen in 4.2.4, even in simulated data, the current

generation of tools fail for simple gene models. A few genes, like DSCAM, are known to

produce transcript sets that can not be precisely quanti�ed using short read RNA-seq data.

However if most genes produce relatively few transcripts, as is the current dogma, then it is

still possible to estimate transcript expression under sparsity assumptions.
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Figure 4.2.2. Identi�able Simulations: We simulated from models 1 and 2, with fre-

quencies of 0.75 and 0.25 respectively. All methods perform reasonably well, although Rsem and

Cu�inks estimates exhibit a slight bias.

Recently long read sequencing technologies have matured to the point where it is possible to

directly interrogate the transcriptome. We analyzed unfragmented RNA-seq data that was

sequenced on a PacBio sequencer (http://blog.paci�cbiosciences.com/2013/12/data-release-

human-mcf-7-transcriptome.html). Speci�cally, we identi�ed all pairs of cassette exons in

GENCODE version 19 that could be co-expressed, were more than 800 basepairs apart in

every GENCODE annotated transcript, and were expressed with an average read coverage

of at least 1.

If it were true, as many believe, that the transcriptome were relatively sparse then we

would expect to observe only two combinations of a particular pair of cassette exons in the

majority of genes. However, of the 28,674 pairs of cassette exons identi�ed we observed all 4

combinations in 62% of transcripts (see Figure 4.3.1). This suggests that alternate splicing

events greater than 800 bases apart are regulated independently. It also suggests that precise

identi�cation of transcript frequencies is not possible given current technologies.
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Figure 4.2.3. Unidenti�able Simulations: We simulated from all four models, with fre-

quencies of 0.49, 0.49, 0.01, and 0.01 for models 1-4 respectively. The green bar is the true freqeuncy.

Blue bars identify estimated upper bounds, black bars represent estimated frequencies, and red bars

represent estimated lower bounds. Because of the identi�ability problem, no methods are able to

correctly estimate the transcript frequencies. However, only GRIT is able to properly estimate the

con�dence bounds.

4.4. Element Expression Estimation

Although it is not possible to precisely identify transcript expression in many studies the

quantity of interest is the expression of a gene, or gene element. For example, if one were

studying a cancer mutation which produced a receptor variant leading to unrestrained cell

proliferation, we may wish to quantify the fraction of transcripts that contained that receptor

mutation. Similarly, one may be interested in the sum of the concentrations of all transcripts

produced at a particular gene locus. Here, we show that it is possible to precisely identify

such quantities even when the individual transcript expression values can not be estimated.

4.4.1. The �select �rst� paradigm. We follow the lead of popular tools such as Cuf-

�inks and eXpress, modeling an RNA-seq read as being obtained by �rst selecting a fragment

length, then selecting a transcript, and �nally selecting a start position within that transcript

(see 3). Hence, the probability of obtaining a fragment overlapping any particular exon in

the transcript is given by:

P [f e] =
∑
t

P [f ∼ t]P [f ∼ e|f ∼ t](4.4.1)
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Figure 4.2.4. (a) Simulation Models: The set of transcript models we simulated from for

�gure panels c and d. Because the middle exon is 600 basepairs - longer than the length of the

largest fragment - it is impossible to observe exons 2 and 4 in the same read. Thus the staistical

model is not identi�able when all four transcript isoforms are present. (b) Transcript Recovery:

We simulated reads in equal proportions from all four models in panel b, and found that only

GRIT is able to consistently recover all four models with over a thousand reads. Trinity did not

correctly recover any transcript models. Cu�inks recovered 2/20 with 100 reads, 2/20 with 1000

reads, 1/20 with 10k reads, and 6/20 with 10 thousand reads. However, because of the shortest path

assumption, each time it built all four models it created an arti�cial TSS or TTS between 20 and 50

basepairs from the true TSS or TTS. When we restricted the transcripts to be equivalent only when

the gene boundaries are within 10 basepairs of the truth, then Cu�inks did not correctly identify

more than two models correctly. (c) Con�dence Bound Accuracy: We simulated reads from

all for models in panel b, with frequencies of 0.49, 0.49, 0.01, and 0.01 for models 1-4 respectively.

For each tool, we plotted the fraction of times that the estimated con�dence bounds contained the

truth. The dashed black line is at 0.95, the expected fraction of times that the con�dence bounds

should contain the truth. GRIT's con�dence bounds are slightly conservative, covering the truth an

average of 99% of the time. Because of the identi�ability problem, Cu�inks and Rsem con�dence

bounds are extremely anti-conservative, never covering the truth for n=10000. This is a summary

of the data plotted in panel f . Note that, because over 30% of genes have both alternate TSS's

and alternate TES's, Cu�inks and Rsem have the potential to produce anti-conservative con�dence

bounds for a large fraction of annotated gene loci.

If we further assume that we can uniquely identify fragments from sequenced reads and that

reads are uniformly distributed across transcripts, which is pedagogically useful, we have:

P [r ∼ e] =
∑
t

P [r ∼ t]L(e)

L(t)

=
∑
t

NtL(t)

NWL(w)

L(e)

L(t)

=
∑
t

NtL(e)

NWL(w)

=
L(e)

NWL(w)

∑
t

Nt(4.4.2)
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Figure 4.3.1. We identi�ed all pairs of cassette exons in GENCODE version
19 that: 1) could be co-expressed 2) are more than 800 basepairs apart in
every GENCODE annotated transcript 3) are expressed with an average base
coverage of 1. Of the 28,674 pairs identi�ed, we observed all 4 combinations
in the majority of exon pairs.

where the sum in w ranges over all transcript isoforms in the library, L(·) is the number

of distinct fragments that can overlap an element, and Nt is the count of transcripts of the

isoform type in the library. Note that the ratio L(t)/L(e) is equal to the ratio of the lengths

(in base pairs) for L(f) ≪ L(e).

Models similar to equation 4.4.1 underpin Cu�inks ([53]), RSEM ([35]), eXpress ([45]) and

many other widely used software packages. These packages di�er in the details of how they

model the probabilities in 4.4.1, but each reduce down to a form similar to 4.4.2 where it

is necessary to know the length of every transcript isoform in the RNA library in order

to compute the expression level of any one. In practice, we rarely have reliable structural

information about even a small subset of transcripts, particularly about their lengths, which

requires precise information about transcript start and end sites. However, note critically

that 4.4.2 does not depend on the length, L(t), of the transcript in question except through

the normalizing sum in the denominator. We will exploit this shortly.
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The count of exons in the library, Ne, is equal to the sum of the count of transcripts containing

that exon,
∑

tNtI [t ∈ e]. Hence

P [r ∼ e] =
L(e)

NWL(w)

∑
t

Nt

=
L(e)

NWL(w)
Ne

Note that Ne does not speci�cally depend on the transcripts which contain it, but rather on

the marginal distribution of transcripts lengths in the RNA library. Thus Ne is only weakly

correlated with the length of the transcripts in which the exon occurs.

In addition note that, since we only care about the sum, if the total amount of RNA in

the library,
∑

tNt, is known and the length and count of even a single transcript isoform

is known, then the normalizing factor
∑
NwL(w) can be estimated by NtL(t)M

P [r t]
. Spike-ins

provide a direct method to estimate this quantity.

The generative model is conceptually simple, but can lead one to overestimate the necessity

of complete inform about the set of transcript isoforms for the purposes of quanti�cation.

4.4.2. The �fragment �rst� paradigm. Here we model an RNA-seq read as obtained

from a pool of fragmented RNAs; transcripts are never expressly selected. It is clear that

the probability of selecting a read from a given transcript will still depend on its length, and

that selecting a read from a particular isoform (a set of identical transcripts) will depend on

the abundance of the set compared to other isoforms in the library. This variance relation

is not apparent in simple pedagogical examples, where the entire library consists of only a

few transcript isoforms.

This has the consequence that the relative expression of exons can be estimated directly

from reads overlapping the exon, without appeal to full length transcript models. This ob-

servation also helps to explain why �wiggle� tracks displaying local read coverage are useful

for exploratory analysis: they encode the majority of the information available from the

RNA-seq experiment (at least in real world, complex library scenarios). Similarly, this em-

phasizes the utility of count-based methods for di�erential expression analysis, and may help

to explain some of the generally very good concordance between transcript level di�erential

expression analysis and those based on counts. We note that our �ndings are consistent with

the model behind underlying Cu�inks, and with additional assumptions, DE-seq, edgeR,

Voom, MISO, DEx-seq, and most other statistical models in use.
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4.5. Discussion

We have presented a comprehensive model of transcript element expression which makes

minimal assumptions about transcript structure, precisely estimating transcript expression

when necessary and producing conservative conservative bounds when not. In addition we

show that, even when it is not possible to identify transcript frequencies, it is possible to

estimate transcript element and gene expression. We have developed a tool, GRIT, which

implements these estimation procedures. GRIT can be downloaded at http://grit-bio.org/.
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CHAPTER 5

Transcript Discovery

5.1. Introduction

The practice of sequencing short fragments of cDNAs on a next or third generation sequenc-

ing platform is known as RNA-seq. This assay yields quantitative information about gene

expression, novel alternative splicing events, RNA editing, poly-adenylation sites, and other

phenomena [57, 21, 40]. Since its inception, the prospect of utilizing RNA-seq data to "as-

semble" new gene and transcripts models has motivated the development of algorithms and

software [53, 19, 22, 50, 46]. De Novo assembly methods, like Trinity[19], Oases[50], and

Trans-Abyss[46] align reads to construct transcript sequences, which can then be mapped

to a reference genome. Genome guided approaches, like Cu�inks[53] and Scripture[22], use

reads that have previously been aligned to a reference genome to identify transcript models.

The impact of RNA-seq data on genome annotation has been most substantial for new or

non-model organism. For instance, RNA-seq data and Cu�inks were used to produce a

de novo annotation for the sea urchin, Strongylocentrotus Purpuratu, but incorporated a

stringent �ltering system that removed novel transcript models that lacked ORFs longer

than 500aa or that didn't encode a known protein [54]. In organisms with more established

reference transcriptomes, the impact of RNA-seq data largely been via manual incorporation

of elements discovered from RNAseq data. GENCODE, the annotation group within the

ENCODE Consortium, has only used PCR-validated RNA-seq splice junctions along with

5' end information from Cap Analysis of Gene Expression (CAGE) data to conduct manual

annotation. FlyBase [17], the primary annotation e�ort for Drosophila, has used RNA-

seq data to manually modify gene models inferred from full length cDNAs and RNA-seq

discovered junctions. Ensembl used RNA-seq data to modify and extend the annotation of

the zebra�sh genome [9], but the e�ort discovered few novel full-length transcript models.

RNA-seq data was combined with trans-spliced leader sequences and polyadenylation tracts

to improve the quality of the Wormbase annotation of Caenorhabditis elegans, but a lack

of high quality annotation tools led the authors to develop their own analysis techniques

and ultimately they focused their analysis on transcript elements, rather than full length

transcripts.
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It is not surprising that full length transcript annotation has primarily remained in the

domain of manual annotation and full-insert cDNA sequencing, because RNA-seq reads are

too short to cover full transcripts, typically providing information only about three or four

exons at a time [31]. This means that it is not always possible to positively identify alternate

transcript isoforms, even as the read depth approaches in�nity. Furthermore, biases in the

RNA-seq assay make positive identi�cation of novel transcript boundaries di�cult[5, 23,

57, 44]. Other annotation tools attempt to circumvent these problem by placing additional

restrictions on the space of discoverable transcripts. For instance, Cu�inks only permits the

minimal set of transcripts needed to explain the splice junctions, over-simplifying complex

loci like Dscam. Trinity always extends transcript contigs to the last base, disallowing nested

promoters and nested poly(A) sites. As we show, these restrictions can produce annotation

sets that are in direct contradiction to observed data from complementary assays.

We introduce a new method, Generalized RNA Integration Tool (GRIT), which we show

performs better than competing tools by utilizing a novel statistical technique combined

with the integration of gene boundary data. Our approach allows for the construction of any

transcript models that can be built by Cu�inks, Trinity, Scripture, Oases and Trans-Abyss,

although our requirement that every transcript model be supported by experimental evidence

can make it more restrictive in practice. For the purposes of benchmarking, we have utilized

a subset of the modENCODE dataset (1.67B bp) to compare the performance of GRIT to

the most widely used transcript-level RNA-seq analysis tools. GRIT has also been applied

to the full set of modENCODE RNA data (over 1 Terrabase of sequence data) to generate

a data driven annotation of the fruit �y transcriptome. These gene and transcript models

use CAGE, RACE, EST, cDNA, 454, stranded paired-end RNA-seq, and poly(A)+seq, to

provide an uprecedentedly detailed look at the biology of eukaryotic genomes. The full

length transcript models that we derive reveal, for instance, that over 20% of protein coding

genes encode multiple localization signals, and alternative polyadenylation is more common

than alternative splicing in neuronal tissue. These and related insights reported here and in

Brown et al.[4] were not obtainable with other analysis tools, and underscore the importance

of integrating multiple assay types when interpreting Next Generation RNA sequencing data.

5.2. GRIT: A tool for integrative analysis of RNA data

GRIT uses reads aligned to a reference genome to build transcript models. We make few

assumptions about the structure of a transcript, but do require that every element (e.g.

promoters or splice junctions) is supported experimentally. A �transcript� is a set of genomic

regions that begin at a transcription start site (TSS), extend through one or more exons

connected by splice junctions, and ends with a transcription end site (TES).
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We de�ne four distinct element types: TSS exons, TES exons, internal exons, and single exon

transcripts. TSS exons begin with an experimentally detected promoter (e.g. via the CAGE

or RACE assays or 5' EST sequencing [29]), and end with a splice donor site. Similarly,

TES exons begin with a splice acceptor site and end with an observed TES (e.g. a poly(A)

site). Internal exons begin and end with a veri�ed splice site, and single exon transcripts

begin with TSS and end with a TES. Our transcript models can use both canonical and non-

canonical splice sites. The set of candidate transcripts includes both single exon transcripts

and transcripts that begin with a TSS exon, contain splice-junction connected exons, and

end with a TES exon (Fig 1b - Exon Graph).

The GRIT annotation pipeline consists of four parts described below: gene region identi�-

cation, element discovery, transcript construction, and transcript expression estimation.

5.2.1. Identifying Gene Regions. Segmenting the genome into gene regions involves

three distinct steps: indentifying exonic regions, identifying intronic regions, and merging

exonic and intronic regions into gene regions.

To build a set of exon regions, we scan the genome for 100 basepair regions without any

RNAseq, CAGE, or poly(A)+seq reads. These empty regions form boundaries between the

di�erent exonic regions.

To identify introns, we collect reads that map in a non-contiguous fashion to the reference

genome, typically known as junction reads. To avoid junction reads that may be experimental

or mapping artifacts, we �lter the set of identi�ed junctions using the �ltering method

described in [21], which requires that junctions have an entropy de�ned as:

pi = reads at o�set i/total reads to junction window

Entropy = −
∑
i

pi log2(pi)

We require that junctions have an entropy score of at least two in one biological sample.

In addition, although the RNA-seq assays we analyzed are highly stranded, there is some

low-level unstranded background. Hence, to remove incorrectly stranded reads, we remove

junctions on the strand opposite of canonical acceptor / donor sequences if their frequency

is less than 5% of the junction frequency on the canonical strand. The junction reads that

pass this �lter are then aggregated into a set of discovered introns.

Finally, we merge exon regions that share a discovered intron, forming our gene regions. Note

that, although 100 basepairs is too large to properly separate many gene pairs, in practice it

provides a good �rst approximation. During the element discovery stage we use the identi�ed
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CAGE and poly(A)+seq peaks in combination with the read coverage to further segment

when necessary.

5.2.2. Element Discovery. Element discovery proceeds independently in each gene

region. We split the gene region into non-overlapping segments with attached labels that

describe the segment boundary (see 5.2.1a). For instance, a segment where the left boundary

is a splice donor and right boundary is a splice acceptor is a canonical intron; a segment

where the left boundary is a splice acceptor and right boundary is a splice donor is a canonical

exon. There are four boundary labels: splice acceptor, splice donor, TSS, and TES. Splice

donors and acceptors are identi�ed directly from junction reads; TSS and TES are identi�ed

from CAGE and poly(A)+seq data using the method described in Chapter II.

All possible pairwise combinations of the four segment boundary labels produce 16 possible

combinations, which we group into seven segment labels: TSS segments, canonical introns,

canonical exons, exon extensions, TES segments, single exon transcripts, and intergenic

segments (see 5.2.1a - Labeled Segments). TSS segments are any segments with a left TSS

label; similarly, TES segments are segments where the right boundary has a TES label.

Canonical introns have a left splice donor label, and a right splice acceptor label. Canonical

exons have a left splice acceptor label, and a right splice donor label. Exon extensions either

have two splice donor labels, or two splice acceptor labels. Single exon transcripts have a

left TSS label, and a right TES label. Labeled segments with low read coverage segments

are now removed.

Within a gene region, a low coverage region is de�ned as a segment where the average read

coverage is lower than a global threshold (1e-2) with high probabilility; or, the ratio of a

segments average read coverage to the highest read coverage segment in the same gene region

is less than 1% with high probability.

Regions that begin with a left TES label and end with a right TSS label are intergenic

segments. If intergenic segments are discovered and the average base coverage is su�ciently

low, then the gene region is split and the element discovery process is re-started in both

halves.

The set of candidate exons is all combinations of adjacent segments that start with TSS or

splice acceptor, and end with a TES or splice donor. Regions that begin with a TSS label

and end with a donor junction are TSS exons; regions that begin with a acceptor junction

and end with TES label are TES exons; regions that begin with a donor junction and end

with an acceptor junction are internal exons; regions that start with a TSS label and end

with a TES label are single exon transcripts (see 5.2.1a - Exons).
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5.2.3. Transcript Discovery. For the purposes of candidate transcript construction,

we model a gene as a directed graph in which each exon is a node, and splice junctions

are edges (see 5.2.1b - Exon Graph). Then the set of candidate transcripts is all possible

paths through this graph that begin with a TSS exon and end with a TES exon (see 5.2.1b

- Example Path). This di�ers from other methods, e.g. Cu�inks, in that we consider all

possible paths subject to this restriction, rather than some minimal set of covering paths.
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Figure 5.2.1. Element Discovery Overview - See Section 2.1.1-2.1.4 for a more

detailed description (a) Exon Discovery: For each gene segment we identify CAGE peaks;

segment the gene region using the CAGE peaks, splice boundaries and poly(A) sites; label

the segments based upon their boundaries; �lter intron segments with low RNA-seq coverage;

and build labeled exons from adjacent segments. (b) Transcript Discovery: For each

gene, we construct a graph where each node is an exon discovered in (b), and each edge

is a junction. Then, each candidate transcript is identi�ed with a single path through this

directed graph that begins with TSS node, and ends with a TES node.
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5.2.4. Sensitivity To Tuning Parameters. GRIT has two main tuning parameters:

one that governs the threshholding of segments with low read coverage, and one that governs

the retention of canonical introns.

Changes to the minimal exon read coverage tuning parameter a�ects the results very little

over reasonable ranges. For instance, in the data set we analyzed for the purposes in this

manuscript, changing this parameter from 0.01 BPKM to 1 BPKM reduces the sensitivity

by less than 1%, and increases the speci�city by less than 1%. This is consistent with our

observation that the limiting factor for transcript construction is junctions reads, rather than

read coverage within a gene body.

The other important tuning parameter is the canonical intron retention threshold and, un-

fortunately, the optimal value is a function of the assay type. For instance, we have applied

GRIT to total RNASeq (data not shown) and �nd that a threshold of 80% percent is nec-

essary to prevent the routine inclusion of unprocessed elements. However, in the poly(A)+

data that we analyzed for this study, a threshold of 5% was su�cient to exclude the vast

majority of unprocessed transcripts. We currently err on the side of conservatism, setting

this to 80% by default. This setting has the potential to miss retained introns in poly(A)+

RNASeq, but seems to provide good results over a wide variety of organisms and protocols.

5.3. Comparison to Competing Tools

Current transcript discovery tools make assumptions about the structure of the underlying

transcripts, usually restricting them to some identi�able subset. For instance, Cu�inks

assumes that the set of possible transcripts is the minimal set of covering paths in the

graphical model described in Section 2.1.3. Trinity requires that transcript models extend

to the furthest base of an assemblable contig, which disallows transcript models with nested

transcription start and termination sites. The GRIT model allows for both of these, but

requires gene boundary information.

5.3.1. GRIT Discovers More FlyBase Transcripts with Higher Precision. We

benchmarked GRIT against Cu�inks, Scripture, and Trinity+Rsem. We used stranded

RNA-seq, CAGE, and poly(A)+seq data produced from dissected heads of 20 day adult �ys.

We analyzed the recall and precision of the transcriptomes generated by each tool by com-

paring them to the expressed 7079 FlyBase 5.45[39] genes (13141 transcripts) (Supp 1.5.1).

Transcripts were considered equivalent when they had the same internal splicing structure

and gene boundaries within 50 basepairs of each other. Under this measure, GRIT re-

covers 44.2% of transcripts with 17.8% speci�city versus 13.4%/8.8% sensitivity/speci�city
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for Cu�inks, 8.6%/3.0% sensitivity/speci�city for Trinity+Rsem, and 0.9%/1.4% sensitiv-

ity/speci�city for Scripture (Figure 5.3.1). When we �lter predicted transcripts with an

expression score less than 1e-6 estimated fragments per kilobase per million reads (FPKMs)

at a marginal 99% con�dence level, then GRIT recovers 39.8% of FlyBase transcripts with

41.3% speci�city. The Cu�inks, Trinity, and Scripture numbers are essentially unchanged.

This substantial rise in speci�city is largely due to eliminating complex genes. The GRIT

annotation is heavily penalized in complex loci, e.g. Dscam1 or Mhc, because FlyBase

includes new transcript models when they contribute a novel exon, intron, or gene boundary

(Flybase 5.45 gene notes). GRIT's superior performance is not purely a result of its increased

ability to precisely predict transcript boundaries; when we relax the transcript boundary

match distance to 200 basepairs, GRIT still out-performs competing methods (Figure 5.3.1).

We studied the consistency of transcript expression scores estimated by calculating the cor-

relation between estimated FPKMs and both CAGE and poly(A)+seq tag counts. GRIT

annotated transcripts are able to achieve Spearman rank correlations between 0.71 and 0.80

across replicates, while Cu�inks, Trinity, and Scripture correlations are all below 0.5 (Figure

5.3.1).

To study the speci�city of the annotated transcript boundaries, we analyzed the motif en-

richment of the two most spatially localized core promoter motifs, TATA[37] and Inr[6], in

regions within 50 bases of annotated TSSs (Figure 5.3.1).

To identify motif enrichment in the genome sequence surrounding annotated TSSs, for each

tool, we �rst identi�ed the unique set of transcript start sites. Then, for each TSS, we scanned

the genome sequence taken from BDGP5 genome for the the TATA motif (TATAAA) and

the Inr Motif ([CT][CT]A[ACGT][AT][CT][CT]). A base position was considered a hit if

the motif match was exact. Finally, we summed the number of hits at each position, and

then divided by the total number of sequences to produce enrichment numbers. To identify

signi�cantly enriched regions, we used a non-parametric approach, performing the above

analysis 10000 times using sequence chosen randomly from transcribed regions throughout

the genome. A particular position was considered enriched if it's value was greater than

9999 of the bootstrapped samples. 9999 was chosen so that the Type I error rate under the

NULL is expected to be 1%, after accounting for multiple testing.

The genome sequence surrounding GRIT and Scripture identi�ed TSSs are signi�cantly

enriched for the TATA motif 24-32 and 30-35 bases upstream of the TSS, respectively. These

correspond to 3.2% and 1.1% of distinct annotated TSSs. Regions identi�ed by Cu�inks

and Trinity are not sign�ciantly enriched for the TATA motif at any positions. Similarly,

GRIT identi�ed regions are signi�cantly enriched for the Inr motif enrichment at ±1 bases
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of the TSS, which corresponds to 12% of annotated TSSs. Neither Cu�inks, Trinity, nor

Scripture identi�ed regions are signi�cantly enriched at any bases for the Inr motif.

We also analyzed the regions within 50 basepairs of FlyBase 5.45 annotated TSSs, and found

TATA enrichment at 27-34 bases corresponding to 2.9% of distinct TSSs, and Inr enrichment

2-3 bases upstream of annotated TSSs, corresponding to 1.5% of distinct annotated TSSs.

Although both GRIT and Flybase TSS regions show similar TATA enrichment, GRIT more

precisely identi�ed the 26-31 basepair upstream positioning[6]. The GRIT enrichment results

are consistent with previous studies [29], which report TATA and Inr motifs in 2.1% and

13.8% of peaked promoters identitifed by RACE[30].
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Figure 5.3.1. Comparison with Existing Tools: (a) Sensitivity and Speci�city

Analysis: We compared the set of transcript isoforms discovered by GRIT, Cu�inks,

Scripture and Trinity to the FlyBase annotation. A transcript was identi�ed as a match if

the internal structure was the same, and the distal boundaries were, variously, within 50

and 200 of one-another. (b) FPKM versus CAGE and poly(A)+seq Counts: For

each sample, we calculated the Spearman Rank Correlation between estimated transcript

FPKMs and raw CAGE and poly(A)+seq read counts within 50 bases of each annotated

promoter/poly(A) site. (c) Motif Analysis: For each sample, we considered the sequence

within 50 bases of annotated promoters. A position was considered a TATA motif hit if

it matched the sequence �T-A-T-A-A�, and an Inr motif match if it matched the sequence

�C/T-C/T-A-N-A/T-C/T-C/T�. The plots are aligned with respect to the �rst base in the

annotated promoter, and plot the fraction of promoters that contain a motif match at each

position, averaged over replicates.
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5.3.2. Alternate transcript boundaries are common and di�erentially regu-

lated. Alternate promoters have long been known to serve a regulatory role. The sequence

of both 5' UTRs introns within 5' UTRs have the potential to alter translational e�ciency

and subcellular localization of the mRNA. Alternative N-terminal protein sequence is known

to control the localization of many proteins.

Genes encoding alternative N-[terminal domains, either by alternative promoter usage or

splicing, include well-studied examples such as the prothoracicotropic hormone (Ptth) gene

critical for metamorphosis in insects[33, 43]. Ptth encodes three neural-secreted hormone

protein isoforms: the canonical form containing a signal peptide sequence for exportation

from the cell; a second isoform with a 25 amino acid N-terminal extension containing a

mitochondrial targeting peptide; and a third form which is shorter than the canonical isoform

by nine amino acids (Figure 5.3.3). The third short isoform is predicted to be localized to the

cytoplasm or nucleus. Ptth encodes for multiple localization signals, which appear to be a

general phenomenon: we �nd that 33% of alternative start codons encode known alternative

protein localization signal (compared to 4.6% of internal cassette exons p < 1e-100 by t-test,

and 14% of alternative C-terminal coding sequence, p < 1e-40 by t-test). Since the majority

of known localization signals are N-terminal, the enrichment relative to other alternative

exons makes a useful negative control. The remarkable observation is that nearly 20% of all

protein coding genes encode multiple localization signals.

We also �nd substantial complexity at the 3' ends of transcripts. For 77 genes alternative

polyadenylation sites alter coding capacity by superceding the stop codon, and has been

shown to have the ability to either change the translated reading frame or generate non-

coding transcript variants [13].

5.3.3. Correctly Identifying Transcript Boundaries Requires Additional Data.

Biases in RNA-seq read coverage have been widely reported [44, 5, 23, 57] and, although

several methods have been developed to attempt to remove such bias [36, 61], the methods

are typically aimed at correcting transcript expression levels rather than correcting read

coverage estimates. As such, local, random changes in read coverage make it di�cult to

determine whether a particular site is a transcript initiation/termination site, or a random

�uctuation in read coverage. To compound this problem, even when we restrict our attention

to polyadenylated transcripts so that we can use poly(A) spanning reads to identify transcript

ends, sequencing bias make the poly(A) spanning reads much more rare than other read types

[10]. For instance, in the modENCODE poly(A)+ data sets, poly(A) spanning reads were

roughly 100 times less likely than they would have been were the read distribution over

transcripts uniform.
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To demonstrate the confounding e�ect of read coverage bias on transcript boundary iden-

ti�cation, we use the CAGE and poly(A) data to determine the extent to which one could

identify TSS and TES sites purely from RNA-seq data. For each gene in Flybase 5.45

(FB5.45) with a BPKM greater than 10, we found the 10 basepair window with the highest

amount of CAGE signal, and recorded the ratio of the net base coverage 50 basepairs up-

stream of the site to 50 basepairs donwstream of the site. We calculated the same statistic

for the furthest poly(A) site in each gene. These two sets gave us our positive control set.

Next, for each gene, we uniformily sampled 10 random locations from within annotated tran-

scription regions, and calculated the signal ratio to build the negative control set. Finally,

we estimated the posterior probability of a site being a gene boundary by direct application

of Bayes theorem, where the marginal probability of a promoter and poly(A) site were taken

from the GRIT identi�ed CAGE and poly(A) regions.

On average, the signal enrichment ratios were 19.7 and 9.7 for TSS and TES's respectively,

versus 1 for the negative control set. Using the known frequency of promoters in the genome

as an estimate of the probability of a promoter and the estimated enrichment ratios, the

maximum posterior probability that a given position is a promoter is 67.9%, and occurs when

the upstream to downstream signal ratio is 85.1 Similarly, for poly(A) sites, the maximum

posterior probability is 35.5% and occurs when the downstream to upstream ratio is 83.2 (see

Figure 5.3.2). Thus, even under ideal conditions, RNA-seq coverage alone is likely insu�cient

to accurately identify transcript boundaries.

The lack of enrichment for core promoter motifs surrounding TSSs annotated by Cu�inks,

Trinity, and Scripture demonstrates the practical challenges in identifying transcript bound-

aries from RNAseq data alone (see Figure 5.3.1).

5.3.4. Current tools under-estimate splicing diversity. Even if the other tools,

e.g. Cu�inks, could be modi�ed to account for transcription start and end site data, they

still would not permit the transcriptional complexity that we observe. We found 47 genes

with the capacity to encode more than 1,000 transcript isoforms[4], and 27% of these are only

present in samples enriched for neuronal tissue. Together, these 13 genes account for nearly

13.5% of the unique transcript isoforms that can be expressed. In Ad20dHeads, 59.6%

of genes expressed encode multiple transcript isoforms (Fig 3b). Of these, 29.8% exhibit

multiple promoters, 48.1% multiple poly(A) events, and 40.1% exhibit alternate splicing

(Fig 3c).

5.3.4.1. DSCAM Simulation. Dscam1 is an example of a well studied gene that has the

potential to encode 38,016 distinct proteins [7](see Figure 5.3.3), and speci�c homophilic

binding has been observed for over 3000 isoform pairs [59]. DSCAM1 is known to play a
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Figure 5.3.2. Identifying Gene Boundaries Solely From RNA-seq: The dark

red line indicates the marginal distribution of RNA-seq signal across exonic regions. The

dark blue and dark green lines indicate the distribution of RNA-seq signal ratios over CAGE

peaks and poly(A) sites, respectively. The dashed blue and green lines indicate the posterior

probability that a location is a TSS or TES, based solely upon its RNA-seq signal ratio.

For instance, the dashed blue line peaking at 0.65 indicates that it is impossible to identify

a CAGE site from RNA-seq signal ratio alone with greater than 65% certainty.

crucial role in axonal tract formation in the developing �y nervous system, and is expressed

in neuronal tissue throughout the lifecycle. We observed the highest levels of expression in

the central nervous system of 2 day old white prepupae (WPP CNS), where we are able to

identify a 3' extension and two novel cassette exons, allowing Dscam1 to produce as many

as 228,096 distinct transcripts. In the data collected from Ad20dHeads, GRIT identi�es 720

isoforms with perfect precision, whereas Cu�inks and Trinity were unable to identify a single

full length transcript.

We used simulated data to study the ability of GRIT, Cu�inks, and Trinity to recapitulate

the complete set of transcript isoforms. We used the set of DSCAM exons from FlyBase 5.45

to enumerate all possible 38016 DSCAM transcript models, and a Normal(300,25) fragment

length distribution truncated at ±2 standard deviations. When fed 10,000 RNASeq reads

simulated uniformily from the canonical 38016 isoforms, GRIT was able to recover every

transcript isoform with perfect precision in 19 of 20 simulations (see Figure 5.3.4). Trinity

was never able to build a full length transcript (see Figure 5.3.4) and Cu�inks was only

able to recover a single transcript in 1 out of 100 simulations, demonstrating their inability

50



a chr2L 575,700 575,900 576,100 576,300 576,500 576,700 576,900

cold

Ptth

-169 _

422 _

-181 _
-72 _

Conservation

Gene Models

Tissue-Specific
RNA-Seq Imaginal Disc

WPP-12hr

cDNA

Imaginal Disc

IP07958

mitochondrial targeting peptide

signal peptide

3,210,000 3,215,000 3,220,000 3,225,000 3,230,000 3,235,000 3,240,000 3,245,000 3,250,000 3,255,000 3,260,000 3,265,000

mRNA

Genomic 
DNA

Protein
Fibronectin Domains

Trans Membrane

Immunoglobulin Domain

d
33 Alternate Exons 48 Alternate Exons 12 Alternate Exons2 Alternate Exons

chr2R

b c

40.4%

41.8% 13.2%
3.5%

0.9%
0.1% 4.8%

13.7%
15.2%

18.0%

26.0% 22.3%

Transcript Isoforms
Per Gene

Transcript Isoforms 
Per Class

1

2-5

6-20

21-100

101-1000

> 1000
19.1%

32.0%

9.3%

6.9%

3.1%
8.1%

21.6%

Alternate TSS

 Alternate TES

Alternate Splicing

Figure 5.3.3. (a) Ptth: The Ptth gene encodes isoforms with multiple proteins due

to alternative N-terminal splicing as well as promoter usage. The sample labeled �Imaginal

Disc� corresponds to mass isolated tissues enriched more than 50% for imaginal discs. (b)

Gene Complexity: Although most genes have less than �ve isoforms, nearly half of tran-

script isoforms originate in genes that encode 100 or more distinct transcripts. (c) Sources

of Gene Complexity: The Venn digram only represents the 59.6% of genes that encode

multiple transcript isoforms. (d) Dscam: Dscam is the most complex gene in Drosophila,

with most of its complexity coming from the combanatorial inclusion of four sets of 2, 33,

48, and 12 alternate exons. The two cassette exons in yellow moldify the trans membrane

domain; the other locus a�ect the paired binding a�nity by modifying the immunoglobulin

domains. The �gure is essentially as appears in [49].

to account for genes of such complexity (see Figure 5.3.4). Simulating from the 228,096

isoforms identi�ed in WPP CNS produces similar results (data not shown).
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Figure 5.3.4. Simulations - (a) Dscam1 Simulations: We simulated from the 38016

potential transcripts identi�ed in Flybase 5.45. Trinity was not able to reconstruct any full length

transcripts; Cu�inks was only able to construct a single full length transcript in 1/100 simulations.

GRIT recovered most transcripts with high average precision when provided 1000 reads, and was

able to reconstruct all 38016 transcripts with perfect precision when provided at 10,000 or more

reads.

5.4. Discussion

The development of tools that enable the accurate interpretation of RNA sequence data is

an important challenge. Our tool, GRIT, can leverage multiple RNA sequence data types,

including CAGE, mRNA-seq, polyA+seq, ESTs, and cDNAs to discover transcript models.

The use of gene boundary data prevents fragmentary transcript models, or models that

erroneously merge distinct genes.

Transcript models assembled by GRIT begin with a transcript start site, are connected by

intervening mRNA-seq signal, and end in a polyadenylation site. When applied to a sub-

set of the modENCODE Drosophila RNA data sets[4], GRIT performs substantially better

than competing methods, both at identifying previously annotated transcript models and

at discovering of new genes and transcripts. GRIT also uses a novel transcript quanti�-

cation procedure which correctly accounts for model unidenti�ability when estimating the

con�dence bounds, permitting conservative con�dence bounds even in gene loci with the

potential to produce thousands of transcript isoforms.

In cases where the extant set of transcripts cannot be con�dently identi�ed, GRIT could be

coupled with other classes of genomic information, including conservation, protein functional

data, and RNA structure to produce a sparse subset of transcripts that preserve known

function. This may aid in generating high-quality transcript annotations. As third generation

sequencing technologies mature, it may become possible to observe full-length transcripts

directly. GRIT currently incorporates cDNA sequences into transcript models, providing

valuable connectivity information, and will make use of single molecule data-types as they

become available.
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Among the most remarkable �ndings of our work on the modENCODE Drosophila RNA

datasets is the fact that over 20% of genes encode proteins with alternative localization

signals. The gene Ptth has been studied for decades, yet GRIT discovered a new start

codon, modulated by an alternative promoter. In addition to emphasizing the importance

of accurate gene boundary information, our studies make evident the need for well-resolved

tissue and cell-type transcript maps: the isoform in question is expressed in only two of the

108 modENCODE samples, where it is the dominant form. Future functional studies are

needed to determine the biological role of this protein and indeed of the thousands of newly

predicted protein isoforms with previously undetected protein localization signals.

Next generation sequencing has provided a view of transcriptomes with unprecedented depth

and enormous complexity. GRIT generates full-length transcript models with sample-by-

sample expression scores. This tool alleviates a current analytical bottleneck, and will dra-

matically enhance the accessibility and usefulness of RNA sequencing data.
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CHAPTER 6

Application to modENCODE

6.1. Preface

The tools described in previous chapters form the basis of a a comprehensive analysis set.

Their largest application to date has been to the modENCODE Droshila RNA data set.

Statmap was used to map the PAS-Seq and CAGE data, and GRIT was used to build

transcript models and quantifcations.

Below I present the major results of our analysis. The work below formed the basis for a man-

uscript which, after modi�cation and substantial edits, was submitted to the journal Nature

where it appeared under the title �Diversity and dynamics of the Drosophila transcriptome�.

6.2. Introduction

Next-generation RNA sequencing has permitted the mapping of transcribed regions of the

genomes of a variety of organisms. These studies demonstrated that large fractions of meta-

zoan genomes are transcribed and cataloged individual elements of transcriptomes, includ-

ing promoters, polyadenylation sites, exons and introns. However, the complexity of the

transcriptome arises from the combinatorial incorporation of these elements into mature

transcript isoforms. Studies that inferred transcript isoforms from short read sequence data

focused on a small subset of isoforms, �ltered using stringent criteria. Studies using cDNA

or EST data to infer transcript isoforms have not had su�cient sampling depth to explore

the diversity of RNA products at the majority of genomic loci. While the human genome

has been the focus of intensive manual annotation, analysis of strand-speci�c RNA-seq data

from human cell lines reveals over 100,000 splice junctions not incorporated into transcript

models. Thus, a large gap exists between genome annotations and the emerging transcrip-

tomes observed in next-generation sequence data. In Drosophila, we previously described a

non-strand-speci�c RNA-seq analysis of a developmental time course through the life cycle

and CAGE analysis of the embryo, which discovered thousands of unannotated exons, in-

trons and promoters, and expanded coverage of the genome by identi�ed transcribed regions,

but not necessarily transcript models. Here, we describe an expansive poly(A)+ transcript

set modeled by integrative analysis of transcription start sites (CAGE and 5' RACE), splice
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sites and exons (RNA-seq), and polyadenylation sites (3' ESTs, cDNAs and RNA-seq). We

analyzed poly(A)+ RNA data from a diverse set of developmental stages, dissected organ

systems and environmental perturbations, much of which is strand-speci�c. Our data pro-

vide higher spatiotemporal resolution and allow for deeper exploration of the Drosophila

transcriptome than was previously possible. Our analysis reveals a transcriptome of high

complexity that is expressed in discrete, tissue- and condition-speci�c mRNA and ncRNA

transcript isoforms that span the majority of the genome and provides valuable insight into

metazoan biology.

6.3. Results

6.3.1. A dense landscape of discrete poly(A)+ transcripts. To broadly sample

the transcriptome, we performed strand-speci�c, paired-end sequencing of poly(A)+ RNA

in biological duplicate from 29 dissected tissue samples including the nervous, digestive, re-

productive, endocrine, epidermal, and muscle organ systems of larvae, pupae and adults.

To detect RNAs not observed under standard conditions we sequenced poly(A)+ RNA in

biological duplicate from 21 whole-animal samples treated with environmental perturba-

tions. Adults were challenged with heat-shock, cold-shock, and exposure to heavy metals

(cadmium, copper and zinc), the drug ca�eine, and the herbicide paraquat. To determine

if exposing larvae resulted in novel RNA expression we treated them with heavy metals,

ca�eine, ethanol and rotenone. Lastly, we sequenced RNA from 21 previously described and

three ovary-derived cell lines (Supplementary Methods). In total, we produced 12.4B strand-

speci�c read-pairs and over a terabase of sequence data, providing 44,000 fold coverage of

the poly(A)+ transcriptome.

Reads were aligned to the Drosophila genome as described, and full-length transcript models

were assembled using our custom pipeline, GRIT (Supplementary Methods). GRIT uses

RNA-seq, p(A)+seq, CAGE, RACE, ESTs, and full-length cDNAs to generate gene and

transcript models. We integrated these models with our own and community manual cu-

ration datasets to obtain an annotation (Supplementary Material, section 12) consisting of

304,788 transcripts and 17,564 genes (Fig. 1a and Supplementary Fig. 1), of which 14,692

are protein-coding (Supplementary Data File 1). Ninety percent of genes produce at most

10 transcript and �ve protein isoforms, while 1% of genes have highly complex patterns

of alternative splicing, promoter usage, and polyadenylation, and may each be processed

into hundreds of transcripts (Fig. 1a, example 1b). Our gene models span 72% of the eu-

chromatin, an increase from 65% in FlyBase 5.12 (FB5.12), the reference annotation at the

beginning of the project (Supplementary Table 1 compares annotations 2008-2013). There

were 64 euchromatic gene-free regions longer than 50kb in FB5.12, and 25 remaining in
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FB5.45. Our annotation includes new gene models in each of these regions. Newly identi�ed

genes (1468 total) are expressed in spatially- and temporally-restricted patterns (Supple-

mentary Fig. 2), and 536 reside in previously uncharacterized gene-free regions. Others

map to well-characterized regions, including the ovo locus, where we discovered a new ovary-

speci�c, poly(A)+ transcript (Mgn94020), extending from the second promoter of ovo on the

opposite strand and spanning 107kb (Fig. 1c). Exons of 36 new genes overlap molecularly

de�ned mutations with associated phenotypes (GSC p-value~0.0002), suggesting potential

functions (Supplementary Table 2). For instance, the lethal P-element insertions l(3)L3051

and l(3)L4111 map to promoters of Mgn095159 and Mgn95009, respectively, suggesting these

may be essential genes. Nearly 60% of the intergenic transcription we reported is now incor-

porated into gene models.

6.3.2. Transcript Diversity. Over half of spliced genes (56%) encode two or more

transcript isoforms with alternative �rst exons (AFEs). The majority of such genes produce

AFEs through coordinated alternative splicing and promoter usage (59%, 4389 genes, hyper-

geometric p-value<1e-16), suggesting coordination between these processes; however a sub-

stantial number of genes utilize one, but not both mechanisms (Fig. 2a). Only 1058 spliced

genes have AFEs that alter coding capacity and increase the complexity of the predicted

proteome. Some genes, such as G protein β-subunit 13F (Gβ13F, Fig. 2b, Supplementary

Fig. 3) have exceptionally complex 5'UTRs, but encode a single protein.

We measured splicing e�ciency using the �percent spliced in� (Ψ) index � the fraction of

isoforms that contain the exon. Introns �anked by coding sequence are retained at an average

Ψ=0.7, whereas introns �anked by non-coding sequence are retained >5-fold more often, with

an average Ψ=3.8 (p<1e-16 subsampling/2-sample t-test), and is most frequent in 5'UTRs

(mean Ψ=5.1, Fig. 2c).

Despite the depth of our RNA-seq data, our data show that 42% of genes encode only a single

transcript isoform, and 55% encode a single protein isoform (Supplementary Methods). In

mammals, it has been estimated that 95% of genes produce multiple transcript isoforms,

(estimates for protein-coding capacity have not been reported).

The majority of transcriptome complexity is attributable to forty-seven genes that have the

capacity to encode >1000 transcript isoforms each (Supplementary Table 3), and account for

50% of all transcripts (Fig. 3a). Furthermore, 27% of transcripts encoded by these genes were

detected exclusively in samples enriched for neuronal tissue, and another 56% only in the

embryo (83% total). To determine their tissue speci�cities we conducted embryonic in situ

expression assays (Fig. 3b) and found that 18 of 35 are detected only in neural tissue (51%

vs. 10% genome-wide, hypergeometric p-value<1e-16, Supplementary Table 4). Of these
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genes, 48% have 3'UTR extensions in embryonic neural tissue (5% genome-wide, p<1e-16).

Furthermore, 44% are targets of RNA-editing (4% genome-wide, p<1e-16, with 18 of 21

validated), and 21% have 3'UTR extensions and RNA-editing sites (10 of 65 genome-wide,

p<1e-100). The capacity to encode thousands of transcripts is largely speci�c to the nervous

system and coincides with other classes of rare, neural-speci�c RNA processing.

6.3.3. Tissue- and sex-speci�c splicing. To examine the dynamics of splicing, we

calculated switch scores, or ∆ Ψ, for each splicing event by comparing the maximal and

minimal Ψ values across all samples, and in subsets including just the developmental and

tissue samples (Fig 4a). In contrast to the median Ψ values, the distribution of ∆ Ψ values is

strikingly di�erent between the developmental and tissue samples. Among the developmental

samples, 38% of events have a ∆ Ψ 50% while between the tissue samples 63% of events

have a ∆ Ψ50%. This di�erence is even more pronounced at higher ∆ Ψ thresholds only 6%

of events have a ∆Ψ 80% between the developmental samples while 31% of events have a

∆ Ψ80% between the tissue samples. Thus, most splicing events are highly tissue-speci�c.

Of the 17,447 alternative splicing events analyzed (Supplementary Materials, section 19),

we �nd that 56.6% changed signi�cantly (∆ Ψ>20%, BF>20). Clustering revealed groups

of splicing events that are coordinately regulated in a tissue-speci�c manner. For example,

1147 splicing events are speci�cally included in heads and excluded in testes or ovaries, while

797 splicing events are excluded in heads but included in testes or ovaries (Fig. 4a).

We identi�ed hundreds of sex-speci�c splicing events from adult male and female RNA-seq

data. To further explore sex-speci�c splicing, we compared the splicing patterns in male and

female heads enriched for brain tissues. There were striking di�erences in gene expression

levels, however, only seven splicing events were consistently di�erentially spliced at each

time point after eclosion (average ∆ Ψ>20%), and these largely corresponded to genes in

the known sex-determination pathway (Supplementary Material). We �nd few examples

of head sex-speci�c splicing. This is in contrast to previous studies, which have come to

con�icting conclusions and used either microarrays analyzing only a subset of splicing events

or single read 36bp RNA-Seq with an order of magnitude fewer reads.

We identi�ed 575 alternative splicing events that are di�erentially spliced in whole male

and female animals (∆ Ψ>20%) and analyzed the tissue-speci�c splicing patterns of each

event (Fig. 4b). We found that 186 of the 321 male-biased splicing events were most

strongly included in testes or accessory glands, and 157 of 254 female-biased exons were

ovary-enriched. Consistent with the extensive transcriptional di�erences observed in testes

compared to other tissues, the genes containing male-speci�c exons are enriched in functions

related to transcription. In contrast, the female-speci�c exon containing genes are enriched
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in functions involved in signaling and splicing (http://reactome.org, Supplementary Table

6). Together, these results indicate that the majority of sex-speci�c splicing is due to tissue-

speci�c splicing in tissues present only in males or females.

6.3.4. Long non-coding RNAs. A growing set of candidate long non-coding RNAs

(lncRNAs) have been identi�ed in Drosophila. In FB5.45 there were 392 annotated lncRNAs,

and it has been suggested that as many as 1119 lncRNAs may be transcribed in the �y.

However, this number was based on transcribed regions, not transcript models, and utilized

non-stranded RNA-seq data. We �nd 3880 genes produce transcripts with ORFs encoding

fewer than 100 amino acids (aa). Of these, 795 encode conserved proteins (Methods) longer

than 20aa. For example, a single exon gene in the last intron of the early developmental

growth factor spätzle encodes a 42aa protein that is highly conserved across all sequenced

Drosophila species. We identi�ed 1875 candidate lncRNA genes producing 3085 transcripts,

2990 of which have no overlap with protein-coding genes on the same strand (Supplementary

Data File 2). Some of these putative lncRNAs may encode short polypeptides, e.g. the gene

tarsal-less encodes three 11aa ORFs with important developmental functions. We determined

protein conservation scores for each ORF between 20 and 100aa (Supplementary Table 6).

Of the 1119 predicted lncRNAs, we provide full-length transcript models for 246 transcribed

loci; the remainder were expressed at levels beneath thresholds used in this study. This

is not surprising, the expression patterns of lncRNAs are more restricted than those of

protein-coding genes: the average lncRNA is expressed (BPKM >1) in 1.5 developmental

and 3.2 tissue samples, compared to 6.6 and 17 for protein-coding genes, respectively. Many

lncRNAs (563 or 30%) have peak expression in testes, and 125 are detectable only in testes.

Similarly restricted expression patterns have been reported for lncRNAs in humans and other

mammals.

Interestingly, all newly annotated genes overlapping molecularly de�ned mutations with

phenotypes are lncRNAs (Supplementary Table 2). For instance, the mutation D114.3 is a

regulatory allele of spineless (ss) that maps 4 kb upstream of ss and within the promoter

of Mgn4221. Similarly, Mgn00541 corresponds to a described, but not annotated 2.0 kb

transcript overlapping the regulatory mutant allele ci[57] of cubitus interruptus. It remains

to be determined whether these mutations are a result of the loss of function of newly

annotated transcripts or cis-acting regulatory elements (e.g. enhancers) or both.

6.3.5. Antisense transcription. Drosophila antisense transcription has been reported,

but the catalog of antisense transcription has been largely limited to mRNA-mRNA overlaps.

We identify non-coding antisense transcript models for 402 lncRNA loci that are antisense

to mRNA transcripts of 422 protein-coding genes (e.g. prd, Fig. 5a), and 36 lncRNAs form
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�sense-antisense gene-chains� overlapping more than one protein-coding locus, as observed

in mammals. In Drosophila, 21% of lncRNAs are antisense to mRNAs, whereas in human

15% of annotated lncRNAs are antisense to mRNAs (GENCODE v10). We assembled an-

tisense transcript models for 5057 genes (29%, compared to previous estimates of 15%).

For 67% of these loci, antisense expression is observable in at least one cell line, indicat-

ing that sense/antisense transcripts may be present in the same cells. LncRNA-mediated

antisense accounts for a small minority of antisense transcription � 94% of antisense loci

correspond to overlapping protein-coding mRNAs transcribed on opposite strands, and of

these, 323 loci (667 genes) share overlapping CDSs. The majority of antisense is due to over-

lapping UTRs: 1389 genes have overlapping 5'UTRs (divergent transcription), 3430 have

overlapping 3'UTRs (convergent transcription), and 540 have both, meaning that, as with

many lncRNAs, they form gene-chains across contiguously transcribed regions. A subset of

antisense gene-pairs overlap almost completely (>90%), which we term reciprocal transcrip-

tion. There are 13 such loci (Supplementary Fig. 5) and seven are male-speci�c (none are

female-speci�c).

The mRNA/lncRNA sense-antisense pairs tend to be more positively correlated in their

expression than mRNA/mRNA pairs, (mean r~0.16 vs. 0.13, KS 2-sample one-sided test

p<1e-9), and while this mean e�ect is subtle, the trend is clearly visible in the quantiles

(95th% lnc/mRNA 0.729 vs. m/mRNA 0.634, Supplementary Fig. 6a). This e�ect is stronger

when the analysis is restricted to cell line samples (Supplementary Fig. 6b).

Even in homogenous cell cultures, evidence for sense-antisense transcription does not guar-

antee that both transcripts exist within individual cells: transcription could originate from

exclusive events occurring in di�erent cells. Cis-natural antisense transcripts (cis-NATs) are

a substantial source of endogenous siRNAs, and their existence directly re�ects the existence

of precursor dsRNA. Cis-NAT-siRNA production typically involves convergent transcription

units that overlap on their 3' ends, but other documented loci generate siRNAs across internal

exons, introns or 5'UTRs. Analysis of head, ovary and testis RNAs showed that 328 unique

sense/antisense gene pair regions generated 21nt RNAs indicative of siRNA production (Sup-

plementary Table 8), and these were signi�cantly enriched (Supplementary Figure 7a, Sup-

plementary Methods) for pairs showing positively correlated expression between sense and

antisense levels across tissues (p~2e-5), embryo developmental stages (p~4e-3), conditions

(p~9e-4), and across all samples (p~3e-5). The tissue distribution of these cis-NAT-siRNAs

showed a bias for testis expression (Supplementary Fig. 7b), with 4-fold greater number rela-

tive to ovaries (p~2e-17, binomial test) and 7-fold relative to heads (p~4e-25) and expression

levels of siRNAs were substantially higher in testes than other tissues (Supplementary Fig.

7c).
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Over 80% of cis-NAT-siRNAs were derived from 3'-convergent gene pairs. Abundant siRNAs

emanate from an overlap of the gryzun and CG14967 3'UTRs (Supplementary Fig. 5). The

remainders were distributed amongst CDSs, introns, and 5'UTRs. We identi�ed abundant,

testis-enriched, siRNA production from a 5'-divergent overlap of Cyt-c-d and CG31808 (Fig.

5b) and from the entire CDS of dUTPase and its antisense noncoding transcript Mgn99994.

6.3.6. Environmental stress reveals new genes, transcripts and common re-

sponse pathways. Whole-animal perturbations each exhibited condition-speci�c e�ects,

e.g. the metallothionein genes were induced by heavy metals (Fig. 6a), but not by other

treatments (Supplementary Table 9). The genome-wide transcriptional response to cadmium

(Cd) exposure involves small changes in expression level at thousands of genes (48 hours af-

ter exposure), but only a small group of genes change >20-fold, and this group includes

six lncRNAs (the third most strongly induced gene is CR44138, Fig. 6a, Supplementary

Fig. 8a). Four newly modeled lncRNAs are di�erentially expressed (1% FDR) in at least

one treatment, and constitute novel eco-responsive genes. Furthermore, 57 genes and 5259

transcripts (of 811 genes) were detected exclusively in these treatment samples. Although

no two perturbations revealed identical transcriptional landscapes, we �nd a homogeneous

response to environmental stressors (Fig. 6b, Supplementary Fig. 8b). The direction of reg-

ulation for most genes is consistent across all treatments; very few are up-regulated in one

condition and down-regulated in another. Classes of strongly up-regulated genes included

those annotated with the GO term �Response to Stimulus, GO:0050896� (most enriched,

p-value<1e-16, Supplementary Fig. 8c), and those that encode lysozymes (>10-fold), cy-

tochrome P450s, and mitochrondrial components mt:ATPase6, mt:CoI, mt:CoIII (>5-fold).

Genes encoding egg-shell, yolk, and seminal �uid proteins are strongly down-regulated in

response to every treatment except �Cold2� and �Heat Shock� (Supplementary Fig. 8d). For

these two stressors, samples were collected 30 minutes after exposure, corresponding to an

�early response test� showing suppression of germ cell production is not immediate.

6.4. Discussion

The majority of transcriptional complexity in Drosophila occurs in tissues of the nervous

system, and particularly in the functionally di�erentiating central and peripheral nervous

systems. A subset of ultra-complex genes encodes more than half of detected transcript

isoforms and these are dramatically enriched for RNA-editing events and 3'UTR extensions,

both phenomena largely speci�c to the nervous system. Our study indicates that the total

information output of an animal transcriptome may be heavily weighted by the needs of the

developing nervous system.
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The improved depth of sampling and spatiotemporal resolution resulted in the identi�cation

of more than 1200 new genes not discovered in our previous study of Drosophila development.

A large fraction of the new genes are testes-speci�c, and many of these are antisense RNAs,

as previously described in mammals. Some new lncRNAs, such as Mgn94020 (Fig. 1), form

sense/antisense gene-chains that bring distant protein-coding genes into transcriptional rela-

tionships, another phenomenon previously described only in mammals. Whenever Mgn94020

is detectably transcribed, the genes on the opposite strand in its introns are not, suggesting

that its transcription may serve a regulatory function independent of the RNA transcribed.

The presence of short RNAs at many regions of antisense transcription indicates that sense

and antisense transcripts are present in the same cells at the same times. Many of these

Drosophila antisense transcripts correspond to �positionally equivalent� antisense transcripts

in human. In the two species we found antisense lncRNAs opposite to orthologous protein-

coding genes. The apparent positional equivalence of �y and human antisense transcription

at genes like Monocarboxylate transporter 1 (Mct1), even-skipped (EVX1), CTCF (CTCF),

Adenosine receptor (ADORA2A), and many others across 600 million years of evolution

suggests a conserved regulatory mechanism basal to sexual reproduction in metazoans.

Perturbation experiments identi�ed new genes and transcripts, but perhaps more impor-

tantly, a general response to stress that is broader than the heat shock pathway. A similar

study conducted on marsh �shes in the wake of the Deep Water Horizon incident in the

Gulf of Mexico demonstrated that the killi�sh response to chronic hydrocarbon exposure in-

cluded induction of lyzosome genes, P450 cytochromes, and mitochondrial components, and

the down-regulation of genes encoding egg-shell and yolk proteins. This overlap of expres-

sional responses by gene families across phyla suggests a conserved metazoan stress response

involving enhanced metabolism and the suppression of genes involved in reproduction.

We de�ned an extensive catalog of putative lncRNAs. However, many genes are known to

encode poorly conserved, short polypeptides, including genes speci�c to the male gonad and

accessory gland. Ribosome pro�ling (Ribo-seq) initially indicated that a number of putative

mammalian lncRNAs may be translated, but this observation has been di�cult to validate

by proteomics, and a re-analysis of Ribo-seq data has suggested that lncRNAs although

they have signatures of ribosome occupancy are not translated. Therefore, while we refer to

these RNAs as �non-coding�, additional data are needed to determine if they produce small

polypeptides.

Our observations raise many questions. Why do genes encoding RNA binding proteins

exhibit extraordinary splicing complexity, often within their 5'UTRs? The splicing factor

pUf68 encodes more than 100 alternatively spliced 5'UTR variants, but encodes a single

protein. The notion that splicing factors may regulate one another to generate complex
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patterns of splicing is consistent with recent computational models. What is the role of

complex splicing during the development of the nervous system? To answer the questions

that come with increasingly complete transcriptomes in higher organisms, it will be necessary

to study gene regulation downstream of transcription initiation, including the regulation of

splicing, localization and translation.

6.5. Figures

Figure 6.5.1. Overview of the annotation a, Scatterplot showing the per
gene correlation between number of proteins and number of transcripts. The
genes Dscam and para are omitted as extreme outliers both encoding >10,000
unique proteins. b, Dystrophin (Dys) produces 72 transcripts and encodes
32 proteins. Highlighted is alternative splicing and polyadenylation at the 3'
end. c, An internal promoter of ovo is bidirectional in ovaries and produces a
lncRNA (430bp) bridging two gene deserts.

6.6. Supplementary Methods and Results

6.6.1. Fly rearing and developmental staging. Fly stocks (except where speci�ed,

the sequenced D. melanogaster isogenic strain y1 cn1 bw1 sp1 was used1) were reared at 24

C on standard Drosophila medium. To collect larvae and adults, the �ies were raised in
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250 ml bottles containing 40 ml medium. To aid in staging third instar larvae the medium

contained 0.05% bromphenol blue (BPB2) and staging was done as described3.

Synchronized embryos were collected from large population cages (ca. 25 cm x 25 cm x

25 cm; maintained at 24 C on a cycle of 14 h light 10 h dark) from adults that were less

than one week old. Following at least one � 2 h pre-lay that preceded timed collections each

day, embryos were collected for two hours on three hard egg lay collection plates made in

150 X 15 mm Petri dishes containing a substrate of 3.3% agar, 13% unsulfured molasses,

and 0.15% Tegasept. The hard egg lay plates were completely covered with a thin layer of

moist yeast paste (Fleischmann's Baker's Dry Yeast) and placed horizontally on a short 1

cm raised Plexiglas bar in the bottom of each cage to avoid crushing �ies. Staged embryos

were passed through an 850 micron screen and collected on a 75 micron screen to remove

adults and yeast paste. Embryos were then dechorionated by treatment with a solution of

50% bleach (3% sodium hypochlorite), 0.2% sodium chloride, and 0.02% Triton-X-100 for

�ve minutes. Embryos were washed twice with 0.2% NaCl, 0.02% Triton bu�er and split

into two samples. Most of the sample (approximately 95%) was rinsed with de-ionized water

in a buchner funnel under mild vacuum, dried brie�y, immediately frozen on dry ice and

stored at -80 C for RNA preparations. The small aliquot was transferred to a clean tube

and �xed (0.1 M Pipes (pH 6.9), 2 mM EGTA, 1 mM MgSO4, 4% paraformaldehyde, 0.1%

glutaraldehyde and 50% heptane for staging4. Samples were shaken for �ve minutes in the

�xative, centrifuged brie�y and the aqueous fraction was removed. An equal volume of

methanol containing 2 mM EGTA was added and the sample was shaken for �ve additional

minutes. Tissue was washed twice in methanol with 2 mM EGTA and saved at -80C for the

characterization of developmental stages.

6.6.2. Dissection of Organ Systems. To detect rarely expressed and tissue speci�c

RNAs we dissected organ systems from larval, pupal and adult animals. We examined

components of the nervous system, from larval and pupal brains and ventral ganglia and

from aged 1, 4 and 20-day adult heads (primarily brain) of mated males and virgin and

mated females. To interrogate the reproductive system we dissected ovaries from females

and testes and accessory glands from males. To study the digestive system we examined

larval and pupal salivary glands and larval and aged 1, 4 and 20-day adult midgut, hindgut

and malpighian tubules. We dissected larval and pupal fat body the primary metabolic

and detoxi�cation organ performing functions analogous to the human liver. To study the

epidermis and muscle organ systems, we mass isolated larval imaginal discs adapted from a

previously describe approach2, with modi�cations detailed below and an aliquot of the sample

prep is shown in Supplementary Figure 8. We also dissected larval and aged 1,4 and 20-day

adult carcasses, which contain cuticle, epidermis, muscle and oenocytes as well as peripheral
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neurons. All tissues were stored at -80 C immediately after dissection until su�cient material

had been collected to permit RNA preparations. A yield of approximately 4 µg total RNA

per mg of tissue collected was typical. A cartoon giving the anatomical relationships between

the tissues collected is provided in Supp. Fig. 10. Speci�cs follow:

2A. Larval tissue dissections: Bottles were started with approximately 60 adult OreR �ies at

25 C. After 5 days, climbing third instar larvae were collected and transferred to a dissecting

surface with 1X PBS bu�er (Ambion) for dissections. We identi�ed the sex of the larva by

the presence of the large clear spherical testes (or smaller ovary) embedded in the white fat

body on the lateral sides of the A5 segment. We recorded and collected the tissues with

equal representation of each sex. To dissect, the cuticle was torn immediately posterior to

the mouth hooks using paired forceps and the larvae were everted as with WPP dissections.

The digestive system and fat body were pulled toward the anterior end and away from the

cuticle. The digestive system was disconnected from the body immediately anterior to the

proventriculus. The salivary glands were collected by pinching them o� from the attached

fat body. The extensive and reticulated fat body was removed from the carcass and digestive

system. The trachea were removed from the digestive system and collected with the carcass.

Tissues collected included the gut (fat body removed, Malphigian tubules included), the

salivary glands (with as much fat body removed as possible), and carcass (without the guts,

salivary glands, fat body and gonads). Dissections were done concurrently so that all three

tissues were collected from a single animal. Male and female tissues were collected in separate

tubes and mixed in equal numbers for the RNA preparations.

2B. L3 Imaginal Discs mass preparation: Bulk preparations of imaginal disc tissue were

done as previously described5 with the following modi�cations. First instar larvae were

transferred to ventilated plastic chambers containing seventeen feet of cotton rope saturated

in a protein-rich yeast slurry (200 g active dry yeast, 6 oz Gerber's Banana food, 100 ml

Grapefruit juice, 50 g ground Special K, 40 g Gerber's Baby Cereal, 20 g Wheat Germ,

1200-1400 ml water) and were allowed to grow until wandering larvae were observed. Larvae

were ground with a Kitchen Aid Artisan mixer (Model KSM150SPER) and Kitchen Aid

grain mill attachment (Model KGMA) with the plates set to leave about 5% of the total

larvae unground. Ringer's solution was replaced with Organ Medium (25 mM β-Glycerol

phosphate disodium salt pentahydrate (Fluka 50020), 10 mM KH2PO4, 30 mM KCl, 10 mM

MgCl2, 3 mM CaCl2, 162 mM sucrose) at all steps. A photograph of the isolated tissues is

given (Supplementary Fig. 9).

2C. Fly WPP and 2-day old pupae CNS: Staged WPP and 2-day old pupae were dissected

in PBS (phosphate bu�ered saline). The posterior end of the pupa was removed with two

forceps at the A7 abdominal segment. The anterior body of the pupa was removed from
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the pupal case with forceps. We held each cuticle at the anterior tip and gently teased the

body towards the posterior opening with forceps. We pulled the cuticle from the anterior

end through the second forceps, holding them nearly closed around the vacated cuticle. This

squeezed the body of the pupa out of the cuticle. The yellow eye discs were removed from

the brain lobes of the CNS. The connected antennal segment at the anterior margin of the

brain was removed. The developing leg and wing disc tissue along with the fat body was

removed, and the attached subesophageal ganglion and ring gland were recovered along with

the brain. The CNS and ring gland were transferred to a collection tube on dry ice and then

stored at -80 C until su�cient tissue for RNA isolation was collected.

2D. White pre-pupal salivary gland and fat body: We collected white pre-pupae (WPP) as

in Graveley et al. 3 and dissected in PBS bu�er. We identi�ed the sex of the larva by the

presence of the large clear spherical testes (or smaller ovary) embedded in the white fat body

on the lateral sides of the A5 segment. We recorded and collected the tissues with equal

representation of each sex. We note that the female WPP tend to be larger. We tore the

cuticle immediately posterior to the mouth hooks and then everted the WPP by pushing the

posterior end inside the body cavity with closed forceps, and �nally collected the fat body

and salivary glands in separate tubes on dry ice.

2E. Pupal fat body mass preparation: We transferred WPP animals 48 h after staging and

resting at 25 C to a 15 ml polycarbonate falcon tube. We added 2 ml of Drosophila Ringers

(182 mM KCl, 46 mM NaCl, 3 mM CaCl, 10 mM Tris-HCl pH 7.2) containing 2% Ficoll,

and crushed the pupae in the tube to release contents from the cuticles. We added 5 ml of

Ringers with 2% Ficoll, mixed with a large bore disposable pipet and �ltered through a 100

um screen. The cell suspension was centrifuged at 660xG for 10 minutes at 40C, and fat

body cells were collected from the surface of the bu�er and transferred to a 1.5ml eppendorf

tube. Cell suspensions were centrifuged at 660xG for 5 minutes at 40 C to remove as much

of the bu�er from beneath the cells as possible. We froze the fat body cells by placing them

on dry ice and stored at -80 C for RNA preparation.

2F. Adult gonads and reproductive tissues: Staged adult �ies were anesthetized with CO2

for 30 minutes or less while dissections were done in PBS (1X; Ambion) for less than 10

minutes each. To dissect/open the abdomen, we pinned down the thorax on either side with

a set of surgical steel forceps (size #4 or #5), and pulled the T3 legs posteriorly to remove

the overlying cuticle and expose the digestive and reproductive organs. The reproductive

tissues were removed and separated from the digestive tract and the cuticle. In the females,

the reproductive tissues included the ovaries and their attached oviducts. Due to tearing

and mechanical damage during dissection, the oviducts were incompletely recovered. In

the males, the reproductive tissues included the testes (generally bright yellow), and the
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accessory glands (generally translucent, with incomplete recovery of the attached seminal

vesicle). We collected the ovaries and oviducts together as a single sample, and separated

the testes from the accessory glands for independent RNA isolation and sequencing. These

tissues were dissected away from all other attached cells, and then frozen in 1.5 ml tubes

submerged in dry ice, and then stored at -80 C until su�cient quantities were obtained for

RNA puri�cations.

2G. Adult gut and carcass: Adult �ies were staged and anesthetized as for the gonad prepa-

ration. The digestive tracts and carcasses were separated after removing the head and

discarding. Holding the thorax and pulling the T3 legs posteriorly to expose the digestive

and reproductive organs was used to dissect the abdomen. The reproductive tissues were

removed and discarded. The digestive tract was separated from the cuticle, adipose tissue

(fat body) and other tissues, and then frozen on dry ice. The remaining tissues (without the

head and reproductive organs) were frozen on dry ice and designated the carcass. All tissues

were stored at -80 C until su�cient quantities were obtained for RNA puri�cations.

2H. Adult head: Isolation of the �y heads was accomplished by placing CO2-anesthitized

adults in a 15 ml conical tube that was then �ash frozen in liquid nitrogen for about one

minute. The tube was then shaken vigorously for 10 seconds, and tapped on the bench-top.

The broken �ies were placed in a frozen glass petri dish on dry ice. The frozen severed heads

were removed with dissecting forceps and placed in an eppendorf tube on dry ice. Flies were

processed in groups of 100 animals per dissection. Isolated tissue was stored at -80 C until

RNA could be puri�ed from an adequate number of prepared heads. Typically, heads were

missing the antennal and maxillary organs, while the mouth-parts were retained.

6.6.3. Environmental Perturbations. 3A. Heat Shock: Twenty virgin males and 20

virgin females were maintained on standard corn meal agar at 25Â°C for four days. After

four days the 40 adult �ies were transferred to clean glass vials and placed in a 36Â° C water

bath (wet heat) and held at 36Â°C for 1 hour followed by a 30-minute recovery at 25Â° C

prior to freezing in liquid nitrogen. This treatment produced relatively high lethality due to

excessive moisture buildup in the vials.

3B. Cold Shock1: Newly eclosed �ies were collected, and placed in cornmeal agar food vials

containing 20 males and 20 females were and kept at 25~ C for 84 hours. Aged, mated �ies

were transferred to empty glass vials and placed in a micro-cooler water bath containing

10% glycol at 25 C. The temperature was decreased to 0C at a rate of 0.2C per minute and

then �ies were held at 0 C for 9 hours. After the cold treatment �ies were transferred to

fresh food vials and kept at 25 C for 2 hours for the recovery period. Following recovery �ies
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were placed in 2 ml tubes, �ash frozen in liquid nitrogen and stored at -80 C prior to RNA

preparations.

3C. Cold Shock 2: Flies were treated as in �Cold Shock 1�, above, except �ies were held on

food vials for four days. Aged, mated �ies were transferred to empty glass vials and placed

in a micro-cooler water bath containing 10% glycol at 0Â° C for two hours. Following the

cold shock �ies were transferred to fresh food vials and kept at 25° C for 30 minutes for the

recovery period. Following recovery �ies were placed in 2 ml tubes, �ash frozen in liquid

nitrogen and stored at -80C prior to RNA preparations.

3D. Feeding schedule for consumed treatments:

3D1. Treatment schedule for Larvae: For each treatment, approximately 50 (mixed sex)

young mated adults were transferred to each fresh food vials and maintained for 12 hours.

Vials were cleared and allowed to age 3.5 to 4 days. Vials were then rinsed into a series of

sieves using tepid water; feeding third instar larvae were collected form the #40 sieve and

transferred to a hard agar plate with a pot of yeast to induce crawling. Prior to reaching the

yeast, larvae were captured and 50 larvae were transferred to new food vials containing the

treatment of interest (details below), and larvae were allowed to feed for 4 hours. Treated

larvae were captured and transferred to 2 ml vials, �ash frozen in liquid nitrogen and stored

at -80 C prior to RNA preparations. The number of survivors was recorded and the mean

lethality calculated for each treatment.

3D2. Treatment schedule for Adults: For each treatment, 40 newly eclosed males and females

(1:1) were transferred to fresh food (BDSC corn meal agar) vials and maintained at 25 C

for two days. To treat �ies, two Kimwipes were folded into a square and put in the bottom

of a one-pint glass bottle. Kimwipes were saturated with 4 ml of the treatment solution,

(10% sucrose solution and one drop of green vegetable coloring per 50 ml solution, plus the

treatment of interest). Harvesting time for adults varied by treatment. Upon harvesting,

�ies were placed in 2 ml tubes, �ash frozen in liquid nitrogen and stored at -80 C prior to

RNA preparations.

3D3. Ca�eine feeding: Starved larvae (as above) were transferred to food vials containing 1.5

mg/ml ca�eine and allowed to feed for 4 h. Adults fed 25 mg/ml ca�eine were harvested after

8 h; adults fed 2.5 mg/ml ca�eine were harvested after 48 h, and after 24 h an additional 1

ml of treatment solution was dripped onto the Kimwipe. Upon harvesting, �ies were placed

in 2 ml tubes, �ash frozen in liquid nitrogen and stored at -80 C prior to RNA preparations.

For adults, 2.5 mg/ml ca�eine is near the LD50 for a 48 h treatment. 25 mg/ml ca�eine is

100% lethal after 24 h.
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3D4. Copper feeding: Starved larvae were transferred to new food vials containing 0.5 mM

CuSO4 and allowed to feed for 12 h. The number of survivors was recorded and the mean

lethality calculated for each treatment. Adults were fed with 15 mM CuSO4. After 24 h

an additional 1 ml of the treatment solution was dripped onto the Kimwipe. Flies were

harvested after 48 h of feeding, placed in 2 ml tubes, �ash frozen in liquid nitrogen and

stored at -80 C prior to RNA preparations. Adult concentrations were all done at or near

the LD50 determined for our feeding method after 48 h. Adults were fed 15 mM copper for

48 h.

3D5. Zinc feeding: Starved larvae were transferred to new food vials containing the 5 mM

ZnCl2 and allowed to feed for 12 h. Treated larvae were transferred to 2 ml vials, �ash frozen

in liquid nitrogen and stored at -80 C prior to RNA preparations. Adults were fed with 4.5

mM ZnCl2. After 24 h an additional 1 ml of the treatment solution was dripped onto the

Kimwipe. Flies were harvested after 48 h of feeding, placed in 2 ml tubes, �ash frozen in

liquid nitrogen and stored at -80 C prior to RNA preparations. Adult concentrations were

done at or near the LD50 determined for our feeding method after 48 h. Adults were fed 4.5

mM zinc for 48 h. Zinc appears to cause a neuromuscular defect in both adults and larvae.

3D6. Cadmium feeding: Starved larvae were transferred to new food vials containing 0.05

mM CdCl2 and allowed to feed for 6 or 12 h. Treated larvae were transferred to 2 ml vials,

�ash frozen in liquid nitrogen and stored at -80 C prior to RNA preparations. Adults were fed

with 0.1 mM or 0.05 mM CdCl2. After 24 h an additional 1 ml of solution was dripped onto

the Kimwipe. Flies were harvested after 48 h of feeding, placed in 2 ml tubes, �ash frozen in

liquid nitrogen and stored at -80 C prior to RNA preparations. Adult concentrations were all

done at or near the LD50 determined for our feeding method after 48 h. This concentration

had a minimal e�ect on larvae after 6 h. Additionally, two vials of larvae were allowed to

complete development and 96% eclosed with no obvious phenotypic abnormalities.

3D7. Paraquat feeding: Two-day-old adults were fed 5 mM paraquat for 48 h, and 3-day-old

adults were fed 10 mM paraquat for 24 h. Following the treatment, adult �ies were �ash-

frozen in liquid nitrogen and stored at -80 C. Feeding third-instar larvae were transferred to

food containing 10 mM paraquat and allowed to feed for 12 h. Following treatment, larvae

were collected and �ash-frozen in liquid nitrogen and stored at -80 C.

3D8. Rotenone feeding: Newly eclosed adults were fed 20 µg/ml rotenone in 10% sucrose

continuously for 10 days. Following the treatment adult �ies were �ash-frozen in liquid

nitrogen and stored at -80 C. There was no evidence that the adults actually ingested any of

the rotenone/sucrose/green dye solution, so we believe that any e�ect on transcription was

likely to be caused by starvation rather than by rotenone itself. Hence we did not sequence
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RNA from these �ies. Feeding third-instar larvae were transferred to food containing either

2 µg/ml or 8 µg/ml rotenone and allowed to feed for 6 h. Following treatment, larvae were

collected and �ash frozen in liquid nitrogen and stored at -80 C.

3D9. Resveratrol feeding: Two-day-old adults were fed 100 µM resveratrol in 10% sucrose

continuously and samples were harvested at 10 days. Adult �ies were �ash frozen in liquid

nitrogen and stored at -80 C.

6.6.4. RNA isolation. RNA from whole animals and cell lines was isolated as previ-

ously described3. Tissues and organ system samples were homogenized in TRIzol reagent:

the sample volume not to exceed 10% of the volume of TRIzol reagent, incubated at room

temperature for 5 minutes before centrifugation in 1.5 ml microcentifuge tubes. Chloroform

was added using 0.267 ml per ml of TRIzol, the tubes were mixed vigorously for 15 seconds,

and incubate at room temperature for 2 minutes. Samples were centrifuged for 15 minutes

at 4 C at 12,000g. The top (aqueous) phases were transferred to clean tubes. RNA was

precipitated from the aqueous phase by adding 0.67 ml of isopropanol per ml of TRIzol.

Tubes were inverted once to mix components. Samples were incubated at room temperature

for 10 minutes and then centrifuged for 10 minutes at 4 C at 12,000g. The supernatant

was removed and the RNA pellet washed once with 75% ethanol, using 0.7 ml per micro-

centrifuge tube with a brief vortex. We centrifuge at 7,500g for 5 minutes at 4 C and then

let the pellet air dry for 10 minutes but did not dry completely. We dissolved the pellet in

RNase-free water and incubated at 37C overnight to dissolve the RNA. The concentration

of RNA was determined using a Nanodrop ND-1000 Spectrophotometer. RNA was stored

at -80C for shipping purposes.

In addition we isolated RNA using the RNeasy (Qiagen) kit that does not capture the RNAs

<200 nt. Poly(A)+ RNA-seq and CAGE were performed using RNeasy samples and thus

re�ect transcripts >200 nt.

6.6.5. Illumina RNA-seq library construction and sequencing. We performed

stranded paired-end RNA sequencing using the Illumina TruSeq stranded sample prepara-

tion kit (Catalog No.15031048). The non-strand-speci�c RNA-Seq data from the develop-

mental samples were previously described3. Strand-speci�c RNA-seq libraries were prepared

from the tissue, cell line, and environmental samples using prerelease Directional mRNA-seq

Library Kits (Illumina) as described previously6. Strand-speci�c total RNA libraries were

prepared from the developmental RNA samples using the dUTP-based protocol described

in7. The poly(A) enrichment libraries were prepared from the 29 tissue sample in biological
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duplicate as described in6. Libraries were sequenced on the Illumina GAIIx or HiSeq2000

platforms using single or paired-end 76-100 bp chemistry.

6.6.6. Illumina CAGE library construction and sequencing. CAGE libraries

were constructed from 36 total RNA samples (RNeasy, Qiagen) using the procedure de-

scribed in8. The libraries were sequenced on the Illumina GAIIx platform to generate 36-nt

reads. The 9-nt barcode linker sequence was removed, and the 27-nt CAGE reads represent-

ing capped 5' transcript ends were aligned to the D. melanogaster genome using StatMap.

6.6.7. RNA sequencing of polyadenylation sites. RNA sequencing libraries speci�c

for polyadenylation sites were prepared as follows. RNA samples, from dissected heads

of males and mated females at 20 days post-eclosion, were used to produce two �polyA-

seq� libraries. Total RNA (2 g) was fragmented in 1X RNA Fragmentation Reagent (Life

Technologies) in 10 l at 65Â°C for 5 minutes. The reaction was stopped by addition of 1 l of

reaction stop bu�er (Life Technologies) and cooled on ice. The fragmented RNA sample was

used, without precipitation, as the starting material for the library construction protocol

and kit described in the Illumina TruSeq Stranded mRNA Sample Preparation Guide (Rev.

D, September 2012), with the following modi�cations. At the second round of poly(A)+

RNA selection, the bound RNA was eluted with addition of 13.5 l of nuclease-free water and

heating to 65Â° for 5 minutes. The eluted RNA was removed from the beads in 11, and 1

l of a custom anchored oligo-dT primer (20 g/l; 5'-NGCAGCAT(20)VN-3') and 5 l of 5X

Superscript II Bu�er (Life Technologies) were added. The sample was heated to 42C for 2

minutes to anneal the primer, then cooled on ice.The annealed sample was used to prepare

a sequencing library following the remaining steps in the Illumina protocol from �rst-strand

cDNA synthesis to the end. Libraries were sequenced on the Illumina HiSeq platform to

produced paired-end reads (2 x 100 nt) following standard protocols.

6.6.8. 454 Titanium-platform RNA-seq library construction and sequencing.

Primer annealing and �rst strand synthesis was a modi�cation of the Clonetech SMART

protocol and used Superscript II from Invitrogen: 420 ng of RNA in water was used in �rst

strand synthesis. To this was added 2 µl and 10 µM Cap-Tail primer at 65Â°C for 3 minutes

and then on ice for 1 minute. To this was added 4 µl Clonetech 5X First Strand Bu�er, 1

µl 10mM dNTP mix, 2 µl 0.1M DTT, 2ul 10 µM Clonetech Template-Switch Primer, 2 µl

Superscript II reverse transcriptase and this was incubated at 42Â° C for 1.25 hours, and

then at 70Â° C for 15 minutes and on ice for 2 minutes. Second strand cDNA synthesis and

ampli�cation used Quanta Biosciences AccuStart Polymerase and 16 cycles of ampli�cation

as follows. A solution containing 330 µl of water was combined with 42.5 10X bu�er, 17 µl
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50mM MgSO4, 8.5 µl 10 mM dNTP, 17 µl 10 µM CAP Primer, 1.7 µl DNA Polymerase, and

8.5 µl �rst strand cDNAs (generated as above). This mix was divided into 4 aliquots of 100

µl each subjected to 16 cycles of: 94Â° C, 5 min; 94Â° C, 40 sec; 65Â° C, 1 min; 72Â° C,

4 min. Reactions were combined and cleaned using a single Qiagen QiaQuick PCR column,

with elution in 30 µl Qiagen EB (10 mM Tris pH 8.0). This yielded cDNA at 710 ng/µl by

Nanodrop spectrophotometry. Next, partial normalization of cDNA abundances was done

using the Evrogen, Trimmer Direct Kit: double stranded nuclease (DSN) treatment for �nal

library (1200 ng) was performed with 1/8 dilution of the DSN enzyme stock and 9 cycles of

ampli�cation. Next, the normalized cDNA library was divided into 6 aliquots of 100 µl each

and ampli�ed a further 9 cycles. Reactions were combined and cleaned using a single Qiagen

QiaQuick PCR column, with elution in 30 µl Qiagen EB. Fragmentation to appropriate size

for 454 sequencing was by nebulization: 400 ng cDNA was fragmented at 30 psi, 1 min.

using a Roche Rapid nebulizer. Fragmented cDNA was concentrated using a single Qiagen

Minelute column, with elution in 25 µl Qiagen EB. Fragments were end-polished and ligated

to adaptors using reagents from the Roche GS-FLX Titanium General Library Preparation

Kit, except for the fragmentation, which used the Klenow kit from New England BioLabs.

To 375 ng of fragmented cDNA (9.4 µl) was added 1.5 µl 10x Polishing bu�er, 1.5 µl BSA,

0.8 µl dNTP mix, 0.9 µl T4 DNA Pol, 0.9 µl Klenow fragment, which we incubated at 12Â°

C, 15 min; 25Â° C, 15 min; 70Â° C, 15 min. Adapters were added per Titanium General

Library kit instructions and the reaction was cleaned using a single Qiagen QiaQuick PCR

column, with elution in 30 µl Qiagen EB. To selectively amplify properly ligated templates,

suppression PCR was performed as follows: to 390 µl of water were added 52.5 µl of 10X

bu�er, 21 µl of 50 mM MgSO4, 10.5 µl each of 10 µM Primers A and B, 5.3 µl of each of 0.5

µM Suppression Primers 1 and 2, 2 µl of DNA Polymerase and 17 µl of Ligation Products

(as above). The mix was divided into 6 aliquots and subjected to 16 cycles of: 94Â° C, 5

min; 94Â° C, 40 sec; 65Â° C, 1 min; 72Â° C, 4 min. The reaction was cleaned using a single

Qiagen QiaQuick PCR column, with elution in 20 µl Qiagen EB. Final size selection was by

gel electrophoresis and solid phase reversible mobilization (SPRI) magnetic bead capture.

Of this Library, 400 ng was combined with 400 ng of pre-fragmented library above and run

at 100 V, 2 h on a 0.8% GTG SeaKem agarose/TAE gel with SybrSafe dye (Invitrogen).

The fraction of templates corresponding to the 500 bp to 800 bp size range were excised and

puri�ed using the Qiagen QiaQuick Gel Isolation Kit according to the manufacturer with the

exception that no heat was used to melt agaraose. The library was eluted in 50 µl Qiagen

EB. The library was further size selected for removal of small fragments using 0.5X (25 µl)

of AMPure (SPRI) beads according to the manufacturer (Agencourt), with elution in 20 µl

Qiagen EB. Library is stored in a siliconized tube at -80 C.
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6.6.9. Read mapping and �ltering. RNA-seq reads were mapped as previously described3.

RNA-seq reads mapping to splice junctions were �ltered additionally using the GRIT pipeline

under default parameters11. CAGE reads were mapped as in9. Long RNA-seq reads se-

quenced on the 454 Titanium platform were mapped using the Celniker cDNA mapping

pipeline described in 3. Reads ending in poly(A) signal from both paired-end Illumina RNA-

seq and 454 Titanium-platform RNA-seq (1.84 M reads) were treated di�erently: we ex-

tracted all reads ending in at least 5 A's where the body of the read, but not the A's map

to the genome uniquely (no more than 2 mismatches and one mapped site). This resulted

in the identi�cation of 111,158 potential polyadenylation site�s by at least one read, 9,161

of which were within known CDS exons with no prior evidence of internal polyadenylation

events. Furthermore, 78% of these poly(A) sites lie more than 2 kb from known poly(A)

sites in the genome, consistent with recently reports in human7. We note that these ubiqui-

tous poly(A) events, however, constitute only a small fraction of all poly(A) reads: 80% of

poly(A) reads were accounted for by known poly(A) sites (within 500 bp of the known site).

Hence, we hypothesize that some background signal exists in either the bioinformatics (read

mapping) or the biochemical assay, or both, that may lead to the appearance of either rare

or artifactual polyadenylation events. To �lter these, we trained a Random Forest classi�er

(RF) (sklearn version 8.7.1) using poly(A) reads within 50 bp of a poly(A) site con�rmed

by cDNA sequencing as true positives (Supplementary Data File 4), and poly(A) reads in

annotated CDS exons and/or in intergenic or intronic space with no other RNA-seq reads

within 500 bp as true negatives. We utilized local poly(A) read density, genome sequence and

known poly(A) motifs in �y12 as well as motifs obtained using MEME13 on cDNA-con�rmed

poly(A) sites, and RNA-seq read density as covariates (for a list see Supplementary Data

File 3). The �tted RF had sensitivity of 97% and an FDR of 3% under cross validation on

a held-out test set. It should be noted that the purity of the negative control cannot be

assured, and hence the true false positive rate may be much lower. We �tted the classi�er

100 times with randomly selected test sets to compute the variability of the imputed sensi-

tivity and FDR, and found both to have standard deviations of 1%. This process retained

57,594 poly(A) sites, accounting for 82% of all poly(A) reads and including 94 that remained

within annotated CDS exons. We manually reviewed each of the 94 instances and in each

case removed these polyadenylation events from our models. Hence, poly(A) reads lying near

known poly(A) sites, or sites with similar sequence composition and patterns of RNA-seq

coverage account for the vast majority of poly(A) reads. We note that our complete empirical

poly(A) dataset is missing poly(A) sites for 757 genes, mostly low expression genes including

gustatory, olfactory, and inotropic receptors. We manually reviewed each of these 757 loci.

The majority had poly(A) ends from targeted cDNA sequencing from the literature, but

others required manual annotation. When possible, we assigned 3' ends based on RNA-seq

72



coverage (�rst base with zero read coverage or 100 fold fall-o�), otherwise we accepted the

boundary assigned by FB5.45, which in some cases was a stop codon. Our complete 3' end

annotation, including manual annotations, is given in Supplementary Data File 5.

6.6.10. Building transcript models from CAGE, RNA-seq, EST, cDNA, and

poly(A) sequence data. We used the GRIT algorithm as described11 with default pa-

rameters and the full set of our RNA-seq datasets to generate transcript models. To obtain

su�cient sequencing depth for GRIT to produce full length transcript models, we merged

a number of RNA-seq samples, e.g. all the samples from Larvae. These sample merges are

speci�ed in the complete GRIT con�guration �le used to execute the run, see Supplemen-

tary Data File 6. We note that GRIT, in its default mode thresholds alternative splicing

events as follows: for each half-site (acceptor or donor site), reads crossing splice junctions

are modeled only if the intron they cross is represented by at least 1% of the reads mapping

to the half-site. To provide an example: if introns A and B share an acceptor sites, but have

di�erent donor sites, donor A and donor B respectively, then if the count of reads mapping

to intron B is less than 1% of the count of reads mapping to intron A, intron B will not be

modeled. Hence, alternative splicing events are only modeled if they are reasonably frequent

in at least one sample. Our strategy is conservative: it is possible that we have not modeled

rare or cell-type speci�c splicing events. This run resulted in 439,000 transcript models for

14,266 genes, including 72% of FB5.45 transcripts and 77% of FlyBase genes. These GRIT

models also included gene merges at 1332 loci. We manually reviewed each gene merge to

evaluate the cause. The majority of gene merges were due to incomplete 3' gene boundary

information: missing polyadenylation sites resulted in 3' to 5' gene merges and hence long

internal exons. This was not surprising, we have deep CAGE and RNA-seq data, but com-

paratively shallow 3' end gene boundary information: 1.84 M reads with poly(A) tails from

poly(A) end enriched RNA-seq, and 32,000 3' ESTs and full-length cDNAs. After compre-

hensive manual review, we accepted 104 of the 1332 putative merges on the basis that these

were mediated by uniquely mapping splice junction reads that passed �ltration and were

present in at least two biological replicates or samples. These analyses also lead us to look

for gene merges between novel transcripts and known genes. We reviewed all gene models

with known retained introns (5558 genes) and �rst exons that were longer than 5 kb or 1

kb longer than the longest FlyBase r.5.45 �rst exon at each gene (285 genes). We selected

71,015 transcripts for deletion and manually annotated an additional 207 novel genes that

had unambiguous CAGE peaks (more than 10 reads in a primary peak), and more than 20x

RNA-seq coverage across a putative gene-body, but no poly(A) read to provide 3' bound-

ary information. In these manual cases, we selected the 3' boundary as the last base with
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RNA-seq read coverage or, in higher coverage cases, the �rst base with a 100 fold drop in

coverage.

To comprehensively identify regions with CAGE and RNA-seq data, but no poly(A) informa-

tion, we ran a genome-wide scan for regions strong CAGE signal and proximal downstream

RNA-seq signal. First, we trained a Random Forest (RF) (sklearn version 8.7.1) to identify

5' gene boundaries from CAGE peaks (a genomic position with the 5' ends of one or more

CAGE tags aligned), RNA-seq, and genome sequence data using the Celniker full length

cDNA collection (Supplementary Data File 4) as a positive training set, and CAGE peaks in

CDS exons with no supporting EST or cDNA data as a negative training set (�ltered CAGE

tracks are given in Supplementary Data File 7), the covariates used to train our Random

Forest Classi�er are given in Supplementary Data File 8. The �tted classi�er had sensitivity

of 95% an FDR of 5% under cross validation on a held-out test set. However, we note that

the purity of the negative control cannot be assured, and hence the true false discovery rate

may be much lower. We �tted the classi�er 100 times with randomly selected test sets to

compute the variability of the imputed sensitivity and speci�city, and found both to have

standard deviations of 1%. We ran the RF genome-wide and classi�ed all CAGE peaks as

�candidate TSSs� or �Other�. Next, we scanned all candidate TSSs for proximal RNA-seq

signal, and subdivided regions into candidate single exon and multi-exonic genes. For can-

didate single exon genes, we required that no splice junction be present within 2 kb, that

they have at least 20x mean coverage in our RNA-seq data and maximum coverage of at

least 100x (over at least one nucleotide) within 2 kb of the CAGE peak, and the minimum

RNA-seq coverage within the 2 kb region occur downstream of the maximum. For candidate

spliced genes we looked for at least 20x mean RNA-seq coverage between the CAGE peak

and a splice junction within 2 kb. These settings were based on extensive manual browsing

and tuning. While we have attempted to be comprehensive, undoubtedly additional genes

and transcripts remain to be discovered in our dataset. We note that our insistence on the

presence of CAGE and RNA-seq data likely dramatically reduced the false discovery rate

of the initial machine learning approach (described above) to peak-calling in CAGE data.

This scan resulted in 7369 candidate single exon genes, all except 824 of which corresponded

to annotated Transposable Elements (TEs) (overlapped an annotated element by >50%),

and this �ltered set (no TEs) we reviewed manually. We identi�ed 1658 candidate spliced

genes and reviewed each of these. These were not TE �ltered prior to review on the ba-

sis that some TEs may be spliced into gene bodies, e.g. via recent exaptation (see below

for additional TE �ltering steps). This process resulted in the manual annotation of 3135

transcripts of 471 novel genes (678 manually annotated genes in total). As with GRIT, we

built all possible transcript isoforms given our short read sequence data. We assigned gene

transcript boundaries as the last contiguous base with RNA-seq coverage or after a 100 fold
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fall-o� in high expression cases. All GRIT and manual models for new genes were BLASTed

against the FB5.45 Transposable Element sequence database, and all models with BLAST

E-values < 0.0001 were removed from the annotation.

Finally we reviewed and recovered any missed known genes or transcripts in order to generate

a comprehensive genome annotation. We reviewed our previous genome annotation e�orts,

which we now call modENCODE version 1 (MDv1) 3 and MDv214,15 to identify any gene

or transcript models that were not reproduced in our GRIT and manual analysis. We

also compared to FB5.45 and RefSeq (downloaded Feb. 2, 2013). This resulted in adding

back a number of missed low expression genes as well as small RNA genes (e.g. tRNAs,

miRNAs, etc.). These results are summarized in Supplementary Figure 1. The resulting

complete annotation is MDv3 (Supplementary Data File 1), and includes attributions for

each annotation.

6.6.11. Predicting proteins based on transcript models. In each transcript, we

automatically annotated the longest ORF as a predicted protein whenever that ORF was at

least 100 aa in length. When the longest ORF was between 20 aa and 100 aa, we evaluated

each ORF longer than 20 aa as follows: we ran RPS-BLAST using the CDD (as below)

and annotated any ORF with a CDD hit E-value of 1e-5 or less; we ran PhyloCSF (as

below) and annotated any ORF with a conservation score of -0.2 or more. We note that

this procedure identi�ed novel conserved ORFs in 277 FB5.45 �non-coding� genes out of 893

such annotated genes, as well as 391 conserved ORFs in novel genes. In all, short conserved

ORFs were identi�ed in 27% of genes with no ORF over 100aa. Only 5% of these calls were

due to the CDD RPS-BLAST search, the remainders were called by PhyloCSF. We consider

these novel short ORFs �provisional�; extensive validation will be required to determine if

they are translated in vivo.

6.6.12. siRNA analysis. The Drosophila melanogaster genome was segmented based

on small RNA-seq read coverage of small RNA libraries in heads, ovaries, and testes. We

clustered overlapping read regions into consensus segments and adjacent segments separated

by less than 500 bp were then merged. The segments overlapping with TEs were excluded.

cis-NAT siRNA features were extracted from these segments. Features used for the predictive

model included 21 nt read frequency (21nt reads/all size reads); strand ratio (21 nt read ratio

of sense/antisense); and read length distribution (mean, standard deviation, mode). We built

a one-class predictive model which was trained on the previously published cisNAT siRNA

loci from our and other labs16,17,18,19 using the above features, and was applied to predict

cis-NAT siRNAs on all segments genome-wide, separately for each library. In summary,

minimum expression for annotating cis-NAT siRNA loci were 21nt reads ≥ 1 RPM for
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both sense and antisense strands (5-95 percentile range is 2.9 � 70.4 RPM); minimum 21nt

percentage (21nt reads/all size reads) for the calling siRNA loci was 60% (5-95 percentile

range is 68% � 88%); minimum sense and antisense strand ratio was< 4.5 fold (5-95 percentile

range is < 2.3 fold).

6.6.13. Conserved Domain and GO analysis of complex loci. We utilized the

NCBI Conserve Domain Database (CDD)20 and the Reverse Psi-BLAST (RPS-BLAST)

tool21 to identify functional domains in predicted proteins, using default settings. We used

an E-value threshold of 1e-5 to specify potential hits. The Reverse Position Speci�c BLAST

2.2.26+ algorithm as part of the NCBI BLAST+ standalone package (version 2.2.26) was

used to identify conserved domains within putative conserved domains.

To further characterize genes that express alternatively spliced transcripts, we examined

conserved protein domains. Among genes with the capacity to produce more than 100 tran-

scripts (292 genes), there are a number of signi�cantly enriched conserved protein domains

(FDR<1%), several corresponding to RNA binding domains: K homology, ELAV/HuD fam-

ily splicing factor, sex-lethal family splicing factor, glycine-rich RNA-binding protein 4 motif,

heterogeneous nuclear ribonucleoprotein R, Q family, and the half-pint family. A number of

kinase-related domains are also strongly enriched. The most enriched Biological Process GO

term is synaptic transmission (16 genes, FDR<7e-14).

6.6.13.1. Identifying conserved ORFs that lack known domains. We utilized the program

PhyloCSF22to identify novel conserved ORFs that lacked known domains in the CDD data-

base. The inputs to the algorithm are the 14 �ies multiple alignment in MAF format (re-

viewed in23)and the set of ORFs called by GRIT in our transcript annotation (see below,

�Predicting proteins based on transcript models�). The algorithm was run in the �AsIs�

mode which analyzes only the input ORFs (ORFs are not discovered by PhyloCSF). Based

on communication with the Kellis group and their previous experience24 (also, personal

communication with Mike Lin), we utilized a conservation score threshold of -0.2 to identify

conserved proteins.

6.6.14. De�ning lncRNA elements. We de�ned lncRNA genes as those that lack

any coding transcript given the above de�nition, and that encode no known small RNA (e.g.

tRNAs, miRNAs, etc.). We note that this means that our annotation includes non-coding

transcripts of coding genes. In Drosophila, there is one gene known to encode four 11aa

ORFs25 and hence it is possible that some of our lncRNAs may yet encode conserved and/or

functional short polypeptides. However, PhyloCSF run time is exponential in minimum

ORF length between 10 aa and 20 aa, due to an exponential increase in the number of
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such ORFs present in transcript models. Furthermore, the power of the model is predicated

on being able to observe protein-coding structure in multi-species alignments, e.g. third

base wobble22This power is dampened in short ORFs, and after extensive manual review

we determined that 20 aa was likely close to the limit of detection of the algorithm. This

corresponds roughly to the limits of detection of MS/MS in our experience26and highlights

the di�culty of identifying short protein coding sequencing, and the importance of emerging

assays such as Ribo-seq27

6.6.15. MISO analysis of splicing dynamics. We parsed the annotation gtf �le

to generate GFF3 �les containing individual splicing event annotations using a perl script

described14. MISO28was used to quantitate the splicing events for all samples in single read

mode as described in14

We identi�ed 25,756 alternative splicing events in the transcript models. Of these, we fo-

cused on 17,447 events that produce only two isoforms per gene and do not have overlapping

annotated features that might confound quantitation and analysis. We calculated Ψ values

for each event in each tissue and developmental sample. We observed nearly identical distri-

butions of median Ψ values for all events across all samples, among just the developmental

samples and among just the tissue samples (Supplementary Fig. 4).

It has previously been shown that mammalian alternative exons whose magnitudes of splic-

ing changes are large are more conserved and more frame-preserving than exons with low

magnitude splicing changes30. To determine if this is also true in Drosophila, we character-

ized the conservation and reading-frame-preservation properties of cassette exons based on

the magnitude of their tissue-speci�c regulation. We divided exons into three bins based on

∆ Ψ: high (∆ Ψ>50%, n=395), moderate (∆ Ψ 25-50%, n=98) and low (∆ Ψ<25%, n=68).

Exons with high ∆ Ψ are more conserved than those with moderate or low ∆ Ψs, both within

the exon and the �anking introns, in particular the upstream intron (Supplementary Fig.

11). In addition, we �nd that exons with high ∆ Ψs tend to preserve the reading-frame more

often than exons with moderate or low ∆ Ψs (Supplementary Fig 10, chi-square p-value 1e-9,

permutation test p-value 3e-8).

6.6.16. Detailed analysis of sex-speci�c splicing in somatic tissues. We previ-

ously identi�ed hundreds of sex-speci�c splicing events from whole adult male and female

RNA-seq data6. To further explore sex-speci�c splicing, we compared the splicing patterns

in male and female heads. There were striking di�erences in gene expression levels between

male and female heads, however, only six splicing events were consistently di�erentially

spliced between males and females in heads at each time point after eclosion (average ∆
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Ψ>20%). Of these, the strongest was the sex-speci�c 5' splice site in fruitless (avg. ∆

Ψ=91%). Two other sex-speci�c splicing events occur in doublesex. The �nal three events

were a retained intron in CG6236, an alternative 5' splice site in Ca2+-channel protein α1
subunit T and an alternative �rst exon in Septin 4. Of the other known splicing events

in the sex-determination pathway, the 5' splice site in transformer had an average ∆ Ψ of

48% (though one comparison had a ∆ Ψ=16%), sex-speci�c splicing of male speci�c lethal-2

was not observed between male and female heads (avg. ∆ Ψ=5%), and splicing events from

Sex lethal (Sxl) were not quanti�ed due to annotation complexity. When we conducted the

quanti�cation on a simpli�ed set of transcripts (MDv13), Sxl is the most sex-speci�c splicing

event in the genome. Surprisingly, these results show that there is little sex-speci�c splicing

in Drosophila heads.

6.6.16.1. Di�erential Gene Expression Analysis. Di�erential gene expression analysis was

conducted only for our adult treatment samples. Our negative control used for this analysis

the wild-type adult �y in gender-balanced mixed populations. Gene-level BPKMs were

computed on independent biological replicates. We conducted quantile normalization of the

BPKMs across all treatments and the negative control.
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Figure 6.5.2. Splicing complexity across the gene body. a, Alternative �rst
exons occur in two main con�gurations: multiple transcription start sites (TSS,
pink) and multiple donor sites (DS, light blue). A subset of the genes in the
multiple TSS category produce transcripts with di�erent TSSs and shared DSs
(red), and a subset of the genes in the DS category produce transcripts with a
shared TSS and di�erent DSs (blue). Some genes in the multiple TSS category
directly a�ect the encoded protein (maroon), and similarly for DS (dark blue).
Overlap of con�gurations is radially proportional (units indicate percentage of
all spliced genes). b, Poly(A)+ testes (blue) and CNS (orange) stranded RNA-
seq of Gβ13F showing complex processing and splicing of the 5'UTR. Splice
junctions (shaded gray as a function of usage) and an expansion of the 5'UTR
showing some of the complexity. Transcription of the gene initiates from one
of three di�erent promoters (green arrows) terminates at one of ten possible
polyA+ addition sites (from adult head poly(A)+seq, red) and generates 235
transcripts. The �rst exon has two alternative splice acceptors that splice
to one of eleven di�erent donor sites. Only �ve donor sites are shown due
to the proximity of splice sites. Four splice donors are represented by the
single red line di�ering by 12, 5 and 19bp respectively. Three splice donors
are represented by the single green line di�ering by 12 and 11bp. Two splice
donors are represented by the single purple line di�ering by 7bp. These splice
variants are combined with four proximal internal splices (Supplementary Fig.
3a) to generate the full complement of transcripts. c, Intron retention rates (Ψ)
across the gene body. The genome-wide mean lengths of exons and introns are
connected by red parabolic arcs, which illustrate the upper and lower quartiles
of intron retention (across all samples) for introns retained at or above 20 Ψ
in at least one sample.
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Figure 6.5.3. Complex splicing patterns are largely limited to neural tissues
a, A small minority of genes (47, 0.2%) encode the majority of transcripts. b,
In situ RNA staining of constitutive exons of four genes with highly complex
splicing patterns in the embryo. Syncrip (Syp), Cap, Retinal degeneration A
(rdgA) and GluClalpha show speci�c late embryonic neural expression in the
ventral midline neurons; dorsal/lateral and ventral sensory complexes; Bol-
wig's organ or larval eye; and central nervous system respectively.
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Figure 6.5.4. Sex-speci�c splicing is largely tissue-speci�c splicing a, Clusters
of tissue-speci�c splicing events. The scale bar indicates Z-scores of Ψ. b, Sex-
speci�c splicing events in whole animals are primarily testes- or ovary-speci�c
splicing events.
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Figure 6.5.5. Examples of antisense transcription a, 5'/5' bidirectional an-
tisense transcription at the prd locus. Short RNA sequencing does not reveal
substantial siRNA (i.e. 21 nt-dominant small RNA) signal in this region (data
not shown). b, A 5'/5' antisense region that produces substantial small RNA
signal on both strands.
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Figure 6.5.6. E�ects of environmental perturbations on the Drosophila tran-
scriptome. Adults were treated with ca�eine (Cf), Cd, Cu, Zn, cold, heat, and
paraquat (PQ). a, A genome-wide map of genes that are up or down regulated
as a function of Cd treatment. Labeled genes are those that showed a 20-fold
(<10% FDR) change in response (linear scale). Genes highlighted in red are
those identi�ed in larvae50. Some genes are omitted for readability, the com-
plete �gure and list of omitted genes are given in Supplementary Fig. 8a. b,
Heat map showing the fold change of genes with an FDR<10% (di�erential
expression) in at least one sample (log2 scale).
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CHAPTER 7

Conclusion

We have developed two tools for the analysis of short read sequencing data. The �rst,

statmap, is the �rst mapping tool that identi�es candidate sequence under a probability

model and is able to proive con�dence bounds for mapping uncertainty. The second, GRIT,

integrates multiple RNA data types and is able to identify and quantify novel genes, exons,

introns, transcript bounds and, in some cases, transcripts. We hope that our models and

tools will be useful for the biological community.
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