Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Intracellular pH reduction prevents excitotoxic and ischemic neuronal death by inhibiting NADPH oxidase

Abstract

Sustained activation of N-methyl-d-aspartate (NMDA) -type glutamate receptors leads to excitotoxic neuronal death in stroke, brain trauma, and neurodegenerative disorders. Superoxide production by NADPH oxidase is a requisite event in the process leading from NMDA receptor activation to excitotoxic death. NADPH oxidase generates intracellular H(+) along with extracellular superoxide, and the intracellular H(+) must be released or neutralized to permit continued NADPH oxidase function. In cultured neurons, NMDA-induced superoxide production and neuronal death were prevented by intracellular acidification by as little as 0.2 pH units, induced by either lowered medium pH or by inhibiting Na(+)/H(+) exchange. In mouse brain, superoxide production induced by NMDA injections or ischemia-reperfusion was likewise prevented by inhibiting Na(+)/H(+) exchange and by reduced expression of the Na(+)/H(+) exchanger-1 (NHE1). Neuronal intracellular pH and neuronal Na(+)/H(+) exchange are thus potent regulators of excitotoxic superoxide production. These findings identify a mechanism by which cell metabolism can influence coupling between NMDA receptor activation and superoxide production.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View